【題目】如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,切線DE交AC于點E.
(1)求證:∠A=∠ADE;
(2)若AD=16,DE=10,求BC的長.
【答案】(1)見解析;(2)15.
【解析】
(1)只要證明∠A+∠B=90°,∠ADE+∠B=90°即可解決問題;
(2)首先證明AC=2DE=20,在Rt△ADC中,DC==12,
設BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解決問題.
(1)證明:連接OD,
∵DE是切線,
∴∠ODE=90°,
∴∠ADE+∠BDO=90°,
∵∠ACB=90°,
∴∠A+∠B=90°,
∵OD=OB,
∴∠B=∠BDO,
∴∠ADE=∠A.
(2)連接CD.
∵∠ADE=∠A,
∴AE=DE,
∵BC是⊙O的直徑,∠ACB=90°,
∴EC是⊙O的切線,
∴ED=EC,
∴AE=EC,
∵DE=10,
∴AC=2DE=20,
在Rt△ADC中,DC==12,
設BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,
∴x2+122=(x+16)2﹣202,
解得x=9,
∴BC==15.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AB=AC=1,點D是BC上一個動點(不與B、C重合),在AC上取E點,使∠ADE=45度.
(1)求證:△ABD∽△DCE;
(2)設BD=x,AE=y,求y關于x的函數關系式;
(3)當:△ADE是等腰三角形時,求AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A,B,C在一條直線上,△ABD,△BCE均為等邊三角形,連接AE和CD,AE分別交CD,BD于點M,P,CD交BE于點Q,連接PQ,BM,下面結論:
①△ABE≌△DBC;②∠DMA=60°;③△BPQ為等邊三角形;④MB平分∠AMC,
其中結論正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c的y與x的部分對應值如下表:
x | -1 | 0 | 1 | 3 |
y | -3 | 1 | 3 | 1 |
下列結論:①拋物線的開口向下;②其圖象的對稱軸為x=1;③當x<1時,函數值y隨x的增大而增大;④方程ax2+bx+c=0有一個根大于4,其中正確的結論有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,有一張矩形紙片,長10cm,寬6cm,在它的四角各減去一個同樣的小正方形,然后折疊成一個無蓋的長方體紙盒.若紙盒的底面(圖中陰影部分)面積是32cm2,求剪去的小正方形的邊長.設剪去的小正方形邊長是xcm,根據題意可列方程為( )
A. 10×6﹣4×6x=32 B. (10﹣2x)(6﹣2x)=32
C. (10﹣x)(6﹣x)=32 D. 10×6﹣4x2=32
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸是直線x=1,下列結論①abc>0;②b2﹣4ac<0;③a+b+c<0;④2a+b=0.其中正確的是( 。
A. ①②③ B. ②④ C. ②③ D. ①③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將邊長為2cm的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,若兩個三角形重疊部分的面積為0.5cm2,則它移動的距離AA′等于( )
A.cmB.
cmC.
cm或
cmD.
cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線的頂點為
,與
軸的一個交點
在點(-3, 0)和(-2 ,0)之間,其部分圖象如圖,則以下結論:①
<0;②
<0;③
=2;④方程
有兩個相等的實數根,其中正確結論的個數為________個.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com