【題目】操作探究:小聰在一張長條形的紙面上畫了一條數軸(如圖所示),
操作一:(1)折疊紙面,使1表示的點與1的點重合,則3的點與_ __表示的點重合;
操作二:(2)折疊紙面,使2表示的點與6表示的點重合,請你回答以下問題:
① 5表示的點與數___表示的點重合;
② 若數軸上A、B兩點之間距離為20,其中A在B的左側,且A、B兩點經折疊后重合,求A、B兩點表示的數各是多少
③ 已知在數軸上點M表示的數是m,點M到第②題中的A、B兩點的距離之和為30,求m的值。
【答案】(1)3;(2)①9;②A表示的數是-8,點B表示的數是12;③-13或17.
【解析】
(1)直接利用已知得出中點進而得出答案;
(2)①利用-2表示的點與6表示的點重合得出中點,進而得出答案;
②利用數軸再結合A、B兩點之間距離為20,即可得出兩點表示出的數據;
③利用②中A,B的位置,利用分類討論進而得出m的值.
解:(1)折疊紙面,使1表示的點與-1表示的點重合,則對稱中心是0,
∴-3表示的點與3表示的點重合,
故答案為:3;
(2)∵-2表示的點與6表示的點重合,
∴對稱中心是數2表示的點,
①-5表示的點與數9表示的點重合;
故答案為:9.
②若數軸上A、B兩點之間的距離為20(A在B的左側),
則點A表示的數是2-10=-8,點B表示的數是2+10=12.
③當點M在點A左側時,則12-m+(-8-m)=30,
解得:m=-13;
當點M在點B右側時,則m-(-8)+m-12=30,
解得:m=17;
綜上,m=-13或17;
科目:初中數學 來源: 題型:
【題目】已知兩個關于x的一元二次方程M: ;N:
,其中
,有下列三個結論:
①若方程M有兩個相等的實數根,則方程N也有兩個相等的實數根;
②若6是方程M的一個根,則是方程N的一個根;
③若方程M和方程N有一個相同的根,則這個根一定是其中正確結論的個數是
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對某一個函數給出如下定義:若存在實數,對于任意的函數值
,都滿足
,則稱這個函數是有界函數,在所有滿足條件的
中,其最小值稱為這個函數的邊界值.例如,下圖中的函數是有界函數,其邊界值是1.
(1)分別判斷函數和
是不是有界函數?若是有界函數,求其邊界值;
(2)若函數的邊界值是2,且這個函數的最大值也是2,求
的取值范圍;
(3)將函數的圖象向下平移
個單位,得到的函數的邊界值是
,當
在什么范圍時,滿足
?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,的中線BD,CE交于點O,F,G分別是BO,CO的中點.
(1)求證:四邊形DEFG是平行四邊形;
(2)若AB=AC,則四邊形DEFG是 (填寫特殊的平行四邊形);
(3)當四邊形DEFG為邊長為2的正方形時,的周長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,在下列五個結論中: ①abc<0;②4ac﹣b2>0;③a﹣b+c>2;④a<b<0;⑤ac+2=b,
正確的個數有________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:中,
,求證:
,下面寫出可運用反證法證明這個命題的四個步驟:
①∴,這與三角形內角和為
矛盾,②因此假設不成立.∴
,③假設在
中,
,④由
,得
,即
.這四個步驟正確的順序應是( 。
A.③④②①B.③④①②C.①②③④D.④③①②
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】動點A從原點出發向數軸負方向運動,同時,動點B也從原點出發向數軸正方向運動,運動到3秒鐘時,兩點相距15個單位長度.已知動點A、B的運動速度比之是3:2(速度單位:1個單位長度/秒).
(1)求兩個動點運動的速度;
(2)A、B兩點運動到3秒時停止運動,請在數軸上標出此時A、B兩點的位置;
(3)若A、B兩點分別從(2)中標出的位置再次同時開始在數軸上運動,運動的速度不變,運動的方向不限,問:經過幾秒鐘,A、B兩點之間相距4個單位長度?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com