【題目】對某一個函數給出如下定義:如果存在實數,對于任意的函數值
,都滿足
,那么稱這個函數是有上界函數,在所有滿足條件的
中,其最小值稱為這個函數的上確界.例如下圖中的函數是有上界函數,其上確界是2.
(1)分別判斷函數(
)和
(
)是不是有上界函數?如果是有上界函數,求其上確界;
(2)如果函數(
)的上確界是
,且這個函數的最小值不超過
,求
的取值范圍;
(3)若函數(
)是以3為上確界的有上界函數,求
值.
【答案】(1)y=(x<0)不是有上界函數;y=2x-3(x<2)是有上界函數,上確界是1;(2)-1≤a<1;(3)
.
【解析】
試題分析:(1)根據有界函數函數的定義和上確界定義分析即可;
(2)根據函數的上確界和函數增減性得到2-a=b,函數的最小值為2-b,根據b>a,函數的最小值不超過2a+1,列不等式求解集即可;
(3)根據對稱軸方程x=a和上確界為3,分類討論a≤3時和a>3時,列方程求解.
試題解析:(1)根據有界函數定義,y=(x<0)不是有上界函數;y=2x-3(x<2)是有上界函數,上確界是1;
(2)∵在y=-x+2中,y隨x的增大而減小,
∴上確界為2-a,即2-a=b,
又b>a,所以2-a>a,解得a<1,
∵函數的最小值是2-b,∴2-b≤2a+1,得a≤2a+1,解得a≥-1,
綜上所述:-1≤a<1;
(3)函數的對稱軸為x=a,
①當a≤3時,函數的上確界是25-10a+2=27-10a,
∴27-10a=3,解得a=,符合題意;
②當a>3時,函數的上確界是1-2a+2=3-2a,
∴3-2a=3,解得a=0,不符合題意.
綜上所述:a=.
科目:初中數學 來源: 題型:
【題目】如圖,以O為圓心的弧度數為60°,∠BOE=45°,DA⊥OB,EB⊥OB.
(1)求的值;
(2)若OE與交于點M,OC平分∠BOE,連接CM.說明CM為⊙O的切線;
(3)在(2)的條件下,若BC=1,求tan∠BCO的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在下列各式中,應填入﹣a的是( 。
A.a12=﹣a13( 。4
B.a12=(﹣a)5( 。7
C.a12=﹣a4( 。8
D.a12=a13+( 。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知a,b,c為△ABC的三邊長,關于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0有兩個相等的實數根,則△ABC為( 。
A. 等腰三角形 B. 等邊三角形 C. 直角三角形 D. 等腰直角三角形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在如圖所示的平面直角坐標系中表示下面各點:
A(2,0);B(1,-3);C(3,-5); D(-3,-5);E(3,5);F(5,7).
(1)A點到原點O的距離是 ______ .
(2)將點C向x軸的負方向平移6個單位,它與點 ______ 重合.
(3)連接CE,則直線CE與x軸,y軸分別是什么關系?
(4)點F到x、y軸的距離分別是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,以A(5,1)為圓心,以2個單位長度為半徑的⊙A交x軸于點B、C.解答下列問題:
(1)根據A點坐標建立平面直角坐標系;
(2)將⊙A向左平移____________個單位長度與y軸首次相切,得到⊙A,并畫出⊙A.此時點A的坐標為_____________.
(3)求BC的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com