(本題滿分10分)
如圖,將OA = 6,AB = 4的矩形OABC放置在平面直角坐標系中,動點M、N以每秒1個單位的速度分別從點A、C同時出發,其中點M沿AO向終點O運動,點N沿CB向終點B運動,當兩個動點運動了t秒時,過點N作NP⊥BC,交OB于點P,連接MP.

(1)點B的坐標為 ;用含t的式子表示點P的坐標為 ;(3分)
(2)記△OMP的面積為S,求S與t的函數關系式(0 < t < 6);并求t為何值時,S有最大值?(4分)
(3)試探究:當S有最大值時,在y軸上是否存在點T,使直線MT把△ONC分割成三角形和四邊形兩部分,且三角形的面積是△ONC面積的

?若存在,求出點T的坐標;若不存在,請說明理由.(3分)