【題目】如圖,AB是半徑為3半圓O的直徑.CD是圓中可移動的弦,且CD=3,連接 AD、BC相交于點P,弦CD從C與A重合的位置開始,繞著點O順時針旋轉120°,則交點P運動的路徑長是________.
科目:初中數學 來源: 題型:
【題目】被譽為“中原第一高樓”的鄭州會展賓館(俗稱“大玉米”)坐落在風景如畫的如意湖,是來鄭州觀光的游客留影的最佳景點.學完了三角函數知識后,劉明和王華同學決定用自己學到的知識測量“大王米”的高度,他們制訂了測量方案,并利用課余時間完成了實地測量.測量項目及結果如下表:
項目 | 內容 | |||
課題 | 測量鄭州會展賓館的高度 | |||
測量示意圖 | 如圖,在E點用測傾器DE測得樓頂B的仰角是α,前進一段距離到達C點用測傾器CF測得樓頂B的仰角是β,且點A、B、C、D、E、F均在同一豎直平面內 | |||
測量數據 | ∠α的度數 | ∠β的度數 | EC的長度 | 測傾器DE,CF的高度 |
40° | 45° | 53米 | 1.5米 | |
… | … |
請你幫助該小組根據上表中的測量數據,求出鄭州會展賓館的高度(參考數據:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,結果保留整數)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,有一矩形ABCD,其三個頂點的坐標分別為A(2,0),B(8,0),C(8,3),將直線l:以每秒3個單位的速度向右運動,設運動時間為t秒.
(1)當t= 時,直線l經過點A(直接填寫答案);
(2)設直線l掃過矩形ABCD的面積為S,試求S>0時S與t的函數關系式;
(3)在第一象限有一半徑為3、且與兩坐標軸恰好都相切的⊙M,在直線l出發的同時,⊙M以每秒2個單位的速度向右運動,如圖2,則當t為何值時,直線l與⊙M相切?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小張投資開辦了一個學生文具店.該店在開學前8月31日采購進一種今年新上市的文具袋.9月份(9月1日至9月30日)進行30天的試銷售,購進價格為20元/個.銷售結束后,得知日銷售量y(個)與銷售時間x(天)之間有如下關系:(
,且x為整數);又知銷售價格z(元/個)與銷售時間x(天)之間的函數關系滿足如圖所示的函數圖象.
(1)直接寫出z關于x的函數關系式;
(2)求出在這30天(9月1日至9月30日)的試銷中,日銷售利潤W(元)與銷售時間x(天)之間的函數關系式;
(3)“十一”黃金周期間,小張采用降低售價從而提高日銷售量的銷售策略.10月1日全天,銷售價格比9月30日的銷售價格降低而日銷售量就比9月30日提高了
(其中a為小于15的正整數),日銷售利潤比9月份最大日銷售利潤少569元,求a的值.(參考數據:
,
,
)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A的坐標為(3,0),點C的坐標為(0,4),OABC為矩形,反比例函數 的圖象過AB的中點D,且和BC相交于點E,F為第一象限的點,AF=12,CF=13.
(1)求反比例函數和直線OE的函數解析式;
(2)求四邊形OAFC的面積?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與x軸交于A、B兩點,與y軸交于點C,且OA=2,OC=3.
(1)求拋物線的解析式;
(2)作Rt△OBC的高OD,延長OD與拋物線在第一象限內交于點E,求點E的坐標;
(3)①在x軸上方的拋物線上,是否存在一點P,使四邊形OBEP是平行四邊形?若存在,求出點P的坐標;若不存在,請說明理由;
②在拋物線的對稱軸上,是否存在上點Q,使得△BEQ的周長最?若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,BC⊥AF于點C,∠A+∠1=90°.
(1)求證:AB∥DE;
(2)如圖2,點P從點A出發,沿線段AF運動到點F停止,連接PB,PE.則∠ABP,∠DEP,∠BPE三個角之間具有怎樣的數量關系(不考慮點P與點A,D,C重合的情況)?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD內接于⊙O,點I是△ABC的內心,∠AIC=124°,點E在AD的延長線上,則∠CDE的度數為( 。
A. 56° B. 62° C. 68° D. 78°
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com