【題目】如圖,△ OAB 是腰長為 1 的等腰直角三角形, OAB 90°,延長OA 至 B1 ,使 AB1 OA ,以OB1 為底,在△ OAB 外側作等腰直角三角形OA1B1 ,再延長OA1 至 B2 , 使 A1B2 OA1 ,以OB2 為底,在△ OA1B1 外側作等腰直角三角形OA2 B2 ,……,按此規律作等腰直角三角形OAn Bn ( n 1 , n 為正整數),回答下列問題:
(1) A3B3 的長是_____________;(2)△ OA2020 B2020 的面積是_____________.
【答案】
【解析】
(1)根據等腰直角三角形的性質得到AB=OA=1,A1B1=AB,A2B2=
A1B1=2AB,A3B3=
A2B2=
AB,故可求解;
(2)先依次求出△OAB,△OA1B1,△OA2B2,△OA3B3的面積,找到變化規律即可求解△ OA2020 B2020 的面積.
(1)∵△ OAB 是腰長為 1 的等腰直角三角形, OAB 90°,延長OA 至 B1 ,使 AB1 OA ,以OB1 為底,在△ OAB 外側作等腰直角三角形OA1B1 ,
∴OB1=2OA=2,設A1O=x,則A1O= A1B1=x
根據A1O2+A1B12= OB12,x2+x2= 22,
得x=,
故A1B1=
同理可得A2B2=A1B1=2AB,A3B3=
A2B2=
AB=
,
∴A3B3=;
(2)∵△ OAB 是腰長為 1 的等腰直角三角形
∴△OAB的面積為=
;
∵A1B1=AB=
∴△OA1B1的面積為=
;
∵A2B2=A1B1=2
∴△OA2B2的面積為;
∵A3B3=2
∴△OA3B3的面積為;
…
∴△OAnBn的面積為;
故△ OA2020 B2020 的面積是
故填:(1). (2).
科目:初中數學 來源: 題型:
【題目】如圖,高速公路上有A、B兩點相距25km,C、D為兩村莊,已知DA=10km,CB=15km.DA⊥AB于A,CB⊥AB于B,現要在AB上建一個服務站E,使得C、D兩村莊到E站的距離相等,則AE的長是( 。km.
A.5B.10C.15D.25
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面材料:
如圖,把
沿直線
平行移動線段
的長度,可以變到
的位置;
如圖,以
為軸,把
翻折
,可以變到
的位置;
如圖,以點
為中心,把
旋轉
,可以變到
的位置.
像這樣,其中一個三角形是由另一個三角形按平行移動、翻折、旋轉等方法變成的.這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.
回答下列問題:
①在圖中,可以通過平行移動、翻折、旋轉中的哪一種方法怎樣變化,使
變到
的位置;
②指圖中線段與
之間的關系,為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校計劃組織師生共300人參加一次大型公益活動,如果租用6輛大客車和5輛小客車,恰好全部坐滿,已知每輛大客車的乘客座位數比小客車多17個.
(1)求每輛大客車和每輛小客車的乘客座位數;
(2)由于最后參加活動的人數增加了30人,學校決定調整租車方案,在保持租用車輛總數不變的情況下,且所有參加活動的師生都有座位,求租用小客車數量的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知,
是一次函數
的圖象和反比例函數
的圖象的兩個交點.
求直線
與
軸的交點
的坐標及
的面積;
在
軸上是否存在一點
,使得
的值最大?若存在,直接寫出點
的坐標;若不存在,請說明理由;
當點
在雙曲線上運動時,作以
、
為鄰邊的平行四邊形,求平行四邊形周長最小時點
的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在⊙O中,將沿弦BC所在直線折疊,折疊后的弧與直徑AB相交于點D,連接CD.
(1)若點D恰好與點O重合,則∠ABC= °;
(2)延長CD交⊙O于點M,連接BM.猜想∠ABC與∠ABM的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】體育器材室有A、B兩種型號的實心球,1只A型球與1只B型球的質量共7千克,3只A型球與1只B型球的質量共13千克.
(1)每只A型球、B型球的質量分別是多少千克?
(2)現有A型球、B型球的質量共17千克,則A型球、B型球各有多少只?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com