精英家教網 > 初中數學 > 題目詳情

【題目】端午節是我國的傳統節日,人們有吃粽子的習慣.某校數學興趣小組為了了解本校學生喜愛粽子的情況,隨機抽取了50名同學進行問卷調查,經過統計后繪制了兩幅尚不完整的統計圖(注:每一位同學在任何一種分類統計中只有一種選擇)

請根據統計圖完成下列問題:
(1)扇形統計圖中,“很喜歡”所對應的圓心角為 ;條形統計圖中,喜歡“糖餡”粽子的人數為 ;
(2)若該校學生人數為800人,請根據上述調查結果,估計該校學生中“很喜歡”和“比較喜歡”粽子的人數之和;
(3)小軍最愛吃肉餡粽子,小麗最愛吃糖餡粽子.某天小霞帶了重量、外包裝完全一樣的肉餡、糖餡、棗餡、海鮮餡四種粽子各一只,讓小軍、小麗每人各選一只.請用樹狀圖或列表法求小軍、小麗兩人中有且只有一人選中自己最愛吃的粽子的概率.

【答案】
(1)144 ;3 
(2)

解:學生有800人,估計該校學生中“很喜歡”和“比較喜歡”粽子的人數之和為800×(1﹣25%)=600(人);


(3)

解:

肉餡、糖餡、棗餡、海鮮餡四種粽子分別用A、B、C、D表示,畫圖如下:

∵共12種等可能的結果,其中小軍、小麗兩人中有且只有一人選中自己最愛吃的粽子有4種,

∴P(小軍、小麗兩人中有且只有一人選中自己最愛吃的粽子)==


【解析】解:(1)扇形統計圖中,“很喜歡”所對應的圓心角為360°×40%=144度;條形統計圖中,喜歡“糖餡”粽子的人數為 3人;
【考點精析】通過靈活運用扇形統計圖和條形統計圖,掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數目以及事物的變化情況;能清楚地表示出每個項目的具體數目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況即可以解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在矩形ABCD中, =a,點G,H分別在邊AB,DC上,且HA=HG,點E為AB邊上的一個動點,連接HE,把△AHE沿直線HE翻折得到△FHE.

(1)如圖1,當DH=DA時,填空:∠HGA=度;
(2)如圖1,當DH=DA時,若EF∥HG,求∠AHE的度數,并求此時的最小值;
(3)如圖3,∠AEH=60°,EG=2BG,連接FG,交邊DC于點P,且FG⊥AB,G為垂足,求a的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線y=ax2+bx+3(a≠0)過A(4,4),B (2,m)兩點,點B到拋物線對稱軸的距離記為d,滿足0<d≤1,則實數m的取值范圍是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】端午節前夕,小東的父母準備購買若干個粽子和咸鴨蛋(每個粽子的價格相同,每個咸鴨蛋的價格相同).已知粽子的價格比咸鴨蛋的價格貴1.8元,花30元購買粽子的個數與花12元購買咸鴨蛋的個數相同,求粽子與咸鴨蛋的價格各多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一只螞蟻從O點出發,沿著扇形OAB的邊緣勻速爬行一周,當螞蟻運動的時間為t時,螞蟻與O點的距離為s,則s關于t的函數圖象大致是( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知拋物線C1:y=ax2+bx+(a≠0)經過點A(﹣1,0)和B(3,0).

(1)求拋物線C1的解析式,并寫出其頂點C的坐標;
(2)如圖1,把拋物線C1沿著直線AC方向平移到某處時得到拋物線C2 , 此時點A,C分別平移到點D,E處.設點F在拋物線C1上且在x軸的下方,若△DEF是以EF為底的等腰直角三角形,求點F的坐標;
(3)如圖2,在(2)的條件下,設點M是線段BC上一動點,EN⊥EM交直線BF于點N,點P為線段MN的中點,當點M從點B向點C運動時:①tan∠ENM的值如何變化?請說明理由;②點M到達點C時,直接寫出點P經過的路線長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲經銷商庫存有1200套A品牌服裝,每套進價400元,每套售價500元,一年內可賣完,現市場流行B品牌服裝,每套進價300元,每套售價600元,但一年內只允許經銷商一次性訂購B品牌服裝,一年內B品牌服裝銷售無積壓,因甲經銷商無流動資金可用,只有低價轉讓A品牌服裝,用轉讓來的資金購進B品牌服裝,并銷售,經與乙經銷商協商,甲、乙雙方達成轉讓協議,轉讓價格y(元/套)與轉讓數量x(套)之間的函數關系式為y=﹣x+360(100≤x≤1200),若甲經銷商轉讓x套A品牌服裝,一年內所獲總利潤為W(元).
(1)求轉讓后剩余的A品牌服裝的銷售款Q1(元)與x(套)之間的函數關系式;
(2)求B品牌服裝的銷售款Q2(元)與x(套)之間的函數關系式;
(3)求W(元)與x(套)之間的函數關系式,并求W的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】質地均勻的小正方體,六個面分別有數字“1”、“2”、“3”、“4”、“5”、“6”,同時投擲兩枚,觀察朝上一面的數字.
(1)求數字“1”出現的概率;
(2)求兩個數字之和為偶數的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,以點B(0,8)為端點的射線BG∥x軸,點A是射線BG上一個動點(點A與點B不重合),在射線AG上取AD=OB,作線段AD的垂直平分線,垂足為E,且與x軸交于點F,過點A作AC⊥OA,交射線EF于點C,連接OC、CD.設點A的橫坐標為t.

(1)用含t的式子表示點E的坐標為 ;
(2)當t為何值時,∠OCD=180°?
(3)當點C與點F不重合時,設△OCF的面積為S,求S與t之間的函數解析式.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视