【題目】如圖,梯形中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一點O為圓心的圓經過A、D兩點,且
,圓心O到弦AD的距離是____cm.
【答案】.
【解析】試題分析:如圖,作AE⊥CD,垂足為E,OF⊥AD,垂足為F,
則四邊形AECB是矩形,
CE=AB=2cm,DE=CD﹣CE=4﹣2=2cm,
∵∠AOD=90°,AO=OD,
所以△AOD是等腰直角三角形,
AO=OD,∠OAD=∠ADO=45°,BO=CD,
∵AB∥CD,
∴∠BAD+∠ADC=180°
∴∠ODC+∠OAB=90°,
∵∠ODC+∠DOC=90°,
∴∠DOC=∠BAO,
∵∠B=∠C=90°
∴△ABO≌△OCD,
∴OC=AB=2cm,OB=CD=4cm,BC=BO+OC=AE=6cm,
由勾股定理知,AD2=AE2+DE2,
得AD=2cm,
∴AO=OD=2cm,
S△AOD=AODO=
ADOF,
∴OF=cm.
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于點(﹣2,0),(x1,0),且1<x1<2,與y軸的正半軸的交點在(0,2)的下方,下列結論:①a<b<c;②2a+c>0;③4a+c<0;④2a﹣b+1>0.其中正確結論的個數為( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點B、E、C、F在一條直線上,AB=DF,AC=DE,∠A=∠D.
(1)求證:AC∥DE;
(2)若BF=13,EC=5,求BC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AD⊥EF,CE⊥EF,∠2+∠3=180°.
(1)請你判斷∠1與∠BDC的數量關系,并說明理由;
(2)若∠1=70°,DA平分∠BDC,試求∠FAB的度數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com