精英家教網 > 初中數學 > 題目詳情

【題目】2009517日至21日,甲型H1N1流感在日本迅速蔓延,每天的新增病例和累計確診病例人數如圖所示.

1)在517日至521日這5天中,日本平均每天新增加甲型H1N1流感確診病例多少人?如果接下來的5天中,繼續按這個平均數增加,那么到526日,日本甲型H1N1流感累計確診病例將會達到多少人?

2)甲型H1N1流感病毒的傳染性極強,某地因1人患了甲型H1N1流感沒有及時隔離治療,經過兩天傳染后共有9人患了甲型H1N1流感,每天傳染中平均一個人傳染了幾個人?如果按照這個傳染速度,再經過5天的傳染后,這個地區一共將會有多少人患甲型H1N1流感?

【答案】1)在517日至521日這5天中,日本平均每天新增加甲型H1N1流感確診病例52.6人,日本甲型H1N1流感累計確診病例將會達到530人;(2)每天傳染中平均一個人傳染了2人,再5天共有2187人患甲型H1N1流感.

【解析】

1)從統計圖上可看出5天共增加了多少人,然后可求出平均人數,進而可求出526日,日本甲型H1N1流感累計確診病例將會達到多少人.

2)設平均一個人一天傳染x個人,第一天共有x+1人,第二天共傳染xx+1)人,根據經過兩天傳染后共有9人患了甲型H1N1流感,可列方程求解,進而可求出如果按照這個傳染速度,再經過5天的傳染后,這個地區一共將會有多少人患甲型H1N1流感.

解:(1)(2674÷552.6(人).

267+52.6×5530(人).

答:在517日至521日這5天中,日本平均每天新增加甲型H1N1流感確診病例52.6人,日本甲型H1N1流感累計確診病例將會達到530人.

2)設平均一個人一天傳染x個人,

xx+1+x+19

x2x=﹣4(舍去).

5天為:(1+272187

答:每天傳染中平均一個人傳染了2人,再5天共有2187人患甲型H1N1流感.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,反比例函數和一次函數相交于點,

1)求一次函數和反比例函數解析式;

2)連接OA,試問在x軸上是否存在點P,使得為以OA為腰的等腰三角形,若存在,直接寫出滿足題意的點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知正方形ABCD的頂點D關于射線CP的對稱點G落在正方形內,連接BG并延長交邊AD于點E,交射線CP于點F.連接DFAF,CG

1)試判斷DFBF的位置關系,并說明理由;

2)若CF4,DF2,求AE的長;

3)若∠ADF2FAD,求tanFAD的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商店準備進一批季節性小家電,每個進價為40元,經市場預測,銷售定價為50元,可售出400個;定價每增加1元,銷售量將減少10個.設每個定價增加x元.

(1)寫出售出一個可獲得的利潤是多少元(用含x的代數式表示)?

(2)商店若準備獲得利潤6000元,并且使進貨量較少,則每個定價為多少元?應進貨多少個?

(3)商店若要獲得最大利潤,則每個應定價多少元?獲得的最大利潤是多少?

【答案】(1)x+10元;(2)每個定價為70元,應進貨200個.(3)每個定價為65元時得最大利潤,可獲得的最大利潤是6250元.

【解析】試題分析:(1)根據利潤=銷售價-進價列關系式,(2)總利潤=每個的利潤×銷售量,銷售量為400-10x,列方程求解,根據題意取舍,(3)利用函數的性質求最值.

試題解析:由題意得:(1)50+x-40=x+10(元),

(2)設每個定價增加x,

列出方程為:(x+10)(400-10x)=6000,解得:x1=10,x2=20,要使進貨量較少,則每個定價為70,應進貨200,

(3)設每個定價增加x,獲得利潤為y,

y=(x+10)(400-10x)=-10x2+300x+4000=-10(x-15)2+6250,x=15,y有最大值為6250,所以每個定價為65元時得最大利潤,可獲得的最大利潤是6250.

型】解答
束】
24

【題目】猜想與證明:

如圖1,擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點在一條直線上,CE在邊CD上,連接AF,若MAF的中點,連接DM、ME,試猜想DMME的關系,并證明你的結論.

拓展與延伸:

(1)若將猜想與證明中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DMME的關系為   

(2)如圖2擺放正方形紙片ABCD與正方形紙片ECGF,使點F在邊CD上,點M仍為AF的中點,試證明(1)中的結論仍然成立.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩名自行車愛好者準備在段長為3500米的筆直公路上進行比賽,比賽開始時乙在起點,甲在乙的前面.他們同時出發,勻速前進,已知甲的速度為12/秒,設甲、乙兩人之間的距離為s(),比賽時間為t(),圖中的折線表示從兩人出發至其中一人先到達終點的過程中s()t()的函數關系根據圖中信息,回答下列問題:

(1)乙的速度為多少米/秒;

(2)當乙追上甲時,求乙距起點多少米;

(3)求線段BC所在直線的函數關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】目前,某校九年級同學對“新冠疫情下停課不停學”線上學習的家長進行問卷調查,隨機調查了若干名家長對線上學習的態度(態度分為:A.無所謂;B.基本贊成;C.反對;D.贊成).并將調查結果繪制成頻數折線統計圖1和扇形統計圖2(不完整).請根據圖中提供的信息,解答下列問題:

1)此次抽樣調查中,共調查了多少名中學生家長;

2)求出圖2中扇形C所對的圓心角度數,并將圖1補充完整;

3)在此次調查活動中,初三(1)班有A1、A2兩位家長對線上學習,持基本贊成的態度,初三(2)班有B1B2兩位學生家長對線上學習,也持基本贊成的態度,現從這4位家長中選2位家長參加學校組織的家;顒,用列表法或畫樹狀圖的方法求出選出的2人來自不同班級的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在矩形中,,點在邊上,連接沿折疊,若點的對稱點的距離為,則的長為______________________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在正方形ABCD中,EBC的中點,FCD上一點,AEEF,下列結論:BAE30°;ABE∽△AEF;CD3CFSABE4SECF.其中正確的有_____(填序號).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點E,點G為AD的中點,連接CG,CG的延長線交BA的延長線于點F,連接FD.

(1)求證:AB=AF;

(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結論.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视