【題目】如圖,已知:,
.
(1)請找出圖中一對全等的三角形,并說明理由;
(2)若,
,求
的度數.
【答案】(1)△OAD≌△OBC,證明見解析;(2)∠BED=40°
【解析】
(1)由SAS可以判定△OAD≌△OBC
(2)△OAD≌△OBC可得∠D=∠C=25°利用三角形內角和為180°可得∠OBC=65°利用三角形的外角等于與它不相鄰的兩個內角的和,可得∠BED的度數.
解(1)△OAD≌△OBC
理由:在△OAD與△OBC中
∴△OAD≌△OBC(SAS)
(2)由(1)可知:△OAD≌△OBC
∴∠D=∠C
∵∠C=25°
∴∠D=25°
∵∠O=90°
∴∠OBC=180°-∠O-∠C
=180°-90°-25°
=65°
在△BDE中,∠OBC=∠D+∠BED
∴∠BED=∠OBC-∠D
=65°-25°
=40°
科目:初中數學 來源: 題型:
【題目】如圖所示,在某海域,一般指揮船在C處收到漁船在B處發出的求救信號,經確定,遇險拋錨的漁船所在的B處位于C處的南偏西45°方向上,且BC=60海里;指揮船搜索發現,在C處的南偏西60°方向上有一艘海監船A,恰好位于B處的正西方向.于是命令海監船A前往搜救,已知海監船A的航行速度為30海里/小時,問漁船在B處需要等待多長時間才能得到海監船A的救援?(參考數據:,
,
結果精確到0.1小時)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將三角形ABC水平向右平移得到三角形DEF,A,D兩點的距離為1,CE=2,∠A=70°.根據題意完成下列各題:
(1)AC和DF的數量關系為 ;AC和DF的位置關系為 ;
(2)∠1= 度;
(3)BF= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一位畫家有若干個邊長為的正方體,他在地面上把它們擺成如圖(三層)的形式,然后,他把露出的表面都涂上顏色.
(1)圖中的正方體一共有多少個?
(2)一點顏色都沒涂上顏色的正方體有多少個?
(3)如果畫家按此方式擺成七層,那又要多少個正方體?同樣涂上顏色,又有多少個正方體沒有涂上一點顏色?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】知識改變世界,科技改變生活.導航裝備的不斷更新極大方便了人們的出行.如圖,某校組織學生乘車到黑龍灘(用C表示)開展社會實踐活動,車到達A地后,發現C地恰好在A地的正北方向,且距離A地13千米,導航顯示車輛應沿北偏東60°方向行駛至B地,再沿北偏西37°方向行駛一段距離才能到達C地,求B、C兩地的距離.(參考數據:sin53°≈,cos53°≈
,tan53°≈
)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】傳統的端午節即將來臨,某企業接到一批粽子生產任務,約定這批粽子的出廠價為每只4元,按要求在20天內完成.為了按時完成任務,該企業招收了新工人,設新工人李明第x天生產的粽子數量為y只,y與x滿足如下關系:
y=
(1)李明第幾天生產的粽子數量為280只?
(2)如圖,設第x天生產的每只粽子的成本是p元,p與x之間的關系可用圖中的函數圖象來刻畫.若李明第x天創造的利潤為w元,求w與x之間的函數表達式,并求出第幾天的利潤最大?最大利潤是多少元?(利潤=出廠價-成本)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,給出五個等量關系:①AD=BC;②AC=BD;③CE=DE;④∠D=∠C;⑤∠DAB=∠CBA.
請你以其中兩個為條件,另外三個中的一個為結論,推出一個正確的結論(只需寫出一種情況),并加以證明.
已知:
求證:
證明:
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=x+2與x軸交于點A,與y軸交于點C,拋物線y=
x2+bx+c經過A、C兩點,與x軸的另一交點為點B.
(1)求拋物線的函數表達式;
(2)點D為直線AC上方拋物線上一動點;
①連接BC、CD,設直線BD交線段AC于點E,△CDE的面積為S1, △BCE的面積為S2, 求的最大值;
②過點D作DF⊥AC,垂足為點F,連接CD,是否存在點D,使得△CDF中的某個角恰好等于∠BAC的2倍?若存在,求點D的橫坐標;若不存在,請說明理由
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com