【題目】如圖,已知在平面直角坐標系中有兩點A(0,1),B(,0),動點P在線段AB上運動,過點P作y軸的垂線,垂足為點M,作x軸的垂線,垂足為點N,連接MN,則線段MN的最小值為( 。
A. 1B. C.
D.
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,△AEF的頂點E,F分別在BC、CD邊上,高AG與正方形的邊長相等,連BD分別交AE、AF于點M、N,若EG=4,GF=6,BM=,則MN的長為______
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)(操作發現):如圖一,在矩形ABCD中,E是BC的中點,將△ABE沿AE折疊后得到△AFE,點F在矩形ABCD內部,延長AF交CD于點G.猜想線段GF與GC的數量關系是 .
(2)(類比探究):如圖二,將(1)中的矩形ABCD改為平行四邊形,其它條件不變,(1)中的結論是否仍然成立?請說明理由.
(3)(應用):如圖三,將(1)中的矩形ABCD改為正方形,邊長AB=4,其它條件不變,求線段GC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l: 與x軸.y軸交于B,A兩點,點D,C分別為線段AB,OB的中點,連結CD,如圖,將△DCB繞點B按順時針方向旋轉角
,如圖.
(1)連結OC,AD,求證∽
;
(2)當0°<<180°時,若△DCB旋轉至A,C,D三點共線時,求線段OD的長;
(3)試探索:180°<<360°時,是否還有可能存在A,C,D三點共線的情況,若存在,求出此直線的表達式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的圓交AC于點D,交BC于點E,延長AE至點F,使EF=AE,連接FB,FC.
(1)求證:四邊形ABFC是菱形;
(2)若AD=6,BE=2,求四邊形ABFC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3cm,AD=4cm,EF經過對角線BD的中點O,分別交AD,BC于點E,F.
(1)求證:△BOF≌△DOE;
(2)當EF⊥BD時,求AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,拋物線過點
,
,與
軸相交于點
.
(1)求拋物線的解析式;
(2)在軸正半軸上存在點
,使得
是等腰三角形,請求出點
的坐標;
(3)如圖2,點是直線
上方拋物線上的一個動點.過點
作
于點
,是否存在點
,使得
中的某個角恰好等于
的2倍?若存在,請求出點
的橫坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,直線y=2x+b分別交x,y軸于點A、C,拋物線y=ax2+x+4經過A、C兩點,交x軸于另外一點B.
(1)求拋物線的解析式;
(2)點P在第一象限內拋物線上,連接PB、PC,作平行四邊形PBDC,DE⊥y軸于點E,設點P 的橫坐標為t,線段DE的長度為d,求d與t之間的函數關系式.
(3)在(2)的條件下,延長BD交直線AC與點F,連接OF,若∠AFO=∠BFO,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=a(x+1)(x﹣3)與x軸交于A、B兩點,拋物線與x軸圍成的封閉區域(不包含邊界),僅有4個整數點時(整數點就是橫縱坐標均為整數的點),則a的取值范圍_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com