精英家教網 > 初中數學 > 題目詳情

【題目】已知AM是⊙O直徑,弦BCAM,垂足為點N,弦CDAM于點E,連按ABBE

1)如圖1,若CDAB,垂足為點F,求證:∠BED2BAM;

2)如圖2,在(1)的條件下,連接BD,若∠ABE=∠BDC,求證:AE2CN;

3)如圖3,ABCD,BECD47AE11,求EM的長.

【答案】1)見解析;(2)見解析;(33

【解析】

1)根據垂徑定理可得BNCN,根據垂直平分線的性質可得EBEC,從而可得∠BED2BCD,只需證明∠BAM=∠BCD即可;

2)連接AC,如圖2,易得BC2CN,要證AE2CN,只需證AEBC,只需證ABE≌△CDB,只需證BEBD即可;

3)過點OOPABP,作OHBEH,作OQCDQ,連接OC,如圖3,由ABCD可推出OPOQ,易證∠BEA=∠CEA,根據角平分線的性質可得OHOQ,即可得到OPOH,則有,從而可得AE11可求出AO、EO,就可求出AMEM

解:(1)∵BCAM,CDAB,

∴∠ENC=∠EFA90°

∵∠AEF=∠CEN,

∴∠BAM=∠BCD

AM是⊙O直徑,弦BCAM,

BNCN,

EBEC,

∴∠EBC=∠BCD,

∴∠BED2BCD2BAM;

2)連接AC,如圖2,

AM是⊙O直徑,弦BCAM,

=

∴∠BAM=∠CAM,

∴∠BDC=∠BAC2BAM=∠BED,

BDBE

ABECDB中,

∴△ABE≌△CDB,

AECB

BNCN,

AECB2CN;

3)過點OOPABP,作OHBEH,作OQCDQ,連接OC,如圖3,

則有

ABCD,

APCQ,

AM垂直平分BC

EBEC,

∴∠BEA=∠CEA

OHBE,OQCD,

OHOQ,

OPOQOH,

又∵

AO7k,則EO4k,

AEAO+EO11k11,

k1,

AO7,EO4,

AM2AO14,

EMAMAE14113

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】食品安全是老百姓關注的話題,在食品中添加過量的添加劑對人體有害,但適量的添加劑對人體無害且有利于食品的儲存和運輸.某飲料加工廠生產的A、B兩種飲料均需加入同種添加劑,A飲料每瓶需加該添加劑2克,B飲料每瓶需加該添加劑3克,已知270克該添加劑恰好生產了AB兩種飲料共100瓶,問A、B兩種飲料各生產了多少瓶?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在直角坐標系中的正方形ABCD邊長為4,正方形ABCD的中心為原點O.現做如下實驗:拋擲一枚均勻的正方體的骰子(六個面分別標有16這六個點數中的一個),每個面朝上的機會是相同的,連續拋擲兩次,將骰子朝上的點數作為直角坐標系中點P的坐標(第次的點數作為橫坐標,第二次的點數作為縱坐標)

(1)求點P落在正方形ABCD面上(含正方形內部和邊界)的概率;

(2)試將正方形ABCD平移整數個單位,則是否存在一種平移,使點P落在正方形ABCD面上的概率為?若存在,請指出平移方式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD中,AB6,ECD的中點,將△ADE沿AE翻折至△AFE,連接CF,則CF的長度是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1是一種折疊式晾衣架.晾衣時,該晾衣架左右晾衣臂張開后示意圖如圖2所示,兩支腳OCOD10分米,展開角∠COD60°,晾衣臂OAOB10分米,晾衣臂支架HGFE6分米,且HOFO4分米.當∠AOC90°時,點A離地面的距離AM_______分米;當OB從水平狀態旋轉到OB′(在CO延長線上)時,點E繞點F隨之旋轉至OB′上的點E′處,則BE′﹣BE_________分米.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】江門旅游文化節開幕前,某茶葉公司預測今年茶葉能夠暢銷,就用32000元購進了一批茶葉,上市后很快脫銷,茶葉公司又用68000元購進第二批茶葉,所購數量是第一批購進數量的2,但每千克茶葉進價多了10

(1)該茶葉公司兩次共購進這種茶葉多少千克?

(2)如果這兩批茶葉每千克的售價相同,且全部售完后總利潤率不低于20%,那么每千克售價至少是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,以AB為直徑作半圓O,點C是半圓上一點,∠ABC的平分線交OE,DBE延長線上一點,且DEFE

1)求證:ADO切線;

2)若AB20,tanEBA,求BC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校八年級甲、乙兩班各有學生50人,為了了解這兩個班學生身體素質情況,進行了抽樣調查,過程如下,請補充完整.

1)收集數據:從甲、乙兩個班各隨機抽取10名學生進行身體素質測試,測試成績(百分制)如下:

甲班65 75 75 80 60 50 75 90 85 65

乙班90 55 80 70 55 70 95 80 65 70

2)整理描述數據:按如下分數段整理、描述這兩組樣本數據:

成績x

人數

班級

50x60

60x70

70x80

80x90

90x100

甲班

1

3

3

2

1

乙班

2

1

m

2

n

在表中:m=______,n=______

3)分析數據:

①兩組樣本數據的平均數、中位數、眾數如表所示:

班級

平均數

中位數

眾數

甲班

72

x

75

乙班

72

70

y

在表中:x=______,y=______

②若規定測試成績在80分(含80分)以上的學生身體素質為優秀,請估計乙班50名學生中身體素質為優秀的學生有______人.

③現從甲班指定的2名學生(11女),乙班指定的3名學生(21女)中分別抽取1名學生去參加上級部門組織的身體素質測試,用樹狀圖和列表法求抽到的2名同學是11女的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了響應國家有關開展中小學生“課后服務”的政策,某學校課后開設了A:課后作業輔導、B:書法、C:閱讀、D:繪畫、E:器樂,五門課程供學生選擇;其中A(必選項目),再從B、C、D、E中選兩門課程.

1)若學生小玲第一次選一門課程,直接寫出學生小玲選中項目E的概率;

2)若學生小強和小明在選項的過程中,第一次都是選了項目E,那么他倆第二次同時選擇書法或繪畫的概率是多少?請用列表法或畫樹狀圖的方法加以說明并列出所有等可能的結果.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视