【題目】如圖1,△ABC中,AB=AC,∠BAC=90°,CD平分∠ACB,BE⊥CD,垂足E在CD的延長線上.請解答下列問題:
(1)圖中與∠DBE相等的角有: ;
(2)直接寫出BE和CD的數量關系;
(3)若△ABC的形狀、大小不變,直角三角形BEC變為圖2中直角三角形BED,∠E=90°,且∠EDB=∠C,DE與AB相交于點F.試探究線段BE與FD的數量關系,并證明你的結論.
【答案】(1)∠ACE和∠BCD;
(2)BE=CD;
(3)BE=DF,證明見解析
【解析】
(1)根據三角形內角和定理得到∠DBE=∠ACE,根據角平分線的定義得到∠BCD=∠ACE,得到答案;
(2)延長BE交CA延長線于F,證明△CEF≌△CEB,得到FE=BE,證明△ACD≌△ABF,得到CD=BF,證明結論;
(3)過點D作DG∥CA,交BE的延長線于點G,與AE相交于H,分別證明△BGH≌△DFH、△BDE≌△GDE,根據全等三角形的性質解答即可.
解:(1)∵BE⊥CD,
∴∠E=90°,
∴∠E=∠BAC,又∠EDB=∠ADC,
∴∠DBE=∠ACE,
∵CD平分∠ACB,
∴∠BCD=∠ACE,
∴∠DBE=∠BCD,
故答案為:∠ACE和∠BCD;
(2)延長BE交CA延長線于F,
∵CD平分∠ACB,
∴∠FCE=∠BCE,
在△CEF和△CEB中,
,
∴△CEF≌△CEB(ASA),
∴FE=BE,
在△ACD和△ABF中,
,
∴△ACD≌△ABF(ASA),
∴CD=BF,
∴BE=CD;
(3)BE=DF
證明:過點D作DG∥CA,交BE的延長線于點G,與AE相交于H,
∵DG∥AC,
∴∠GDB=∠C,∠BHD=∠A=90°,
∵∠EDB=∠C,
∴∠EDB=∠EDG=∠C,
∵BE⊥ED,
∴∠BED=90°,
∴∠BED=∠BHD,
∵∠EFB=∠HFD,
∴∠EBF=∠HDF,
∵AB=AC,∠BAC=90°,
∴∠C=∠ABC=45°,
∵GD∥AC,
∴∠GDB=∠C=45°,
∴∠GDB=∠ABC=45°,
∴BH=DH,
在△BGH和△DFH中,
,
∴△BGH≌△DFH(ASA)
∴BG=DF,
∵在△BDE和△GDE中,
,
∴△BDE≌△GDE(ASA)
∴BE=EG,
∴BE=.
科目:初中數學 來源: 題型:
【題目】利用我們學過的知識,可以得出下面這個優美的等式:
;該等式從左到右的變形,不僅保持了結構的對稱性,還體現了數學的和諧、簡潔美.
⑴.請你證明這個等式;
⑵.如果,請你求出
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,已知平面內一點與一直線
,如果過點
作直線
,垂足為
,那么垂足
叫做點
在直線
上的射影;如果線段
的兩個端點
和
在直線
上的射影分別為點
和
,那么線段
叫做線段
在直線
上的射影.
如圖①,已知平面內一點與一直線
,如果過點
作直線
,垂足為
,那么垂足
叫做點
在直線
上的射影;如果線段
的兩個端點
和
在直線
上的射影分別為點
和
,那么線段
叫做線段
在直線
上的射影.
如圖②,
、
為線段
外兩點,
,
,垂足分別為
、
.
則點在
上的射影是________點,
點在
上的射影是________點,
線段在
上的射影是________,線段
在
上的射影是________;
根據射影的概念,說明:直角三角形斜邊上的高是兩條直角邊在斜邊上射影的比例中項.(要求:畫出圖形,寫出說理過程.)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小玲和弟弟小東分別從家和圖書館同時當發,沿同一條路相向而行,小玲開始跑步,中途改為步行,到達圖書館恰好用30min.小東騎自行車以300m/min的速度直接回家,兩人離家的路程y(m)與各自離開出發地的時間x(min)之間的函數函象如圖所示.
(1)家與圖書館之間的路程為 m,小東從圖書館到家所用的時間為 .
(2)求小玲步行時y與x之間的函數關系式
(3)求兩人相遇的時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】ΔABC、ΔCDE都是等邊三角形,AD、BE相交于點O,點M、點N分別是線段AD、BE的中點.
(1)證明: AD=BE.(2)求∠DOE的角度。(3)證明:ΔMNC是等邊三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖所示直線y=kx+2(k≠0)與反比例函數y=(m≠0)分別交于點P,與y軸、x軸分別交于點A和點B,且cos∠ABO=
,過P點作x軸的垂線交于點C,連接AC,
(1)求一次函數的解析式.
(2)若AC是△PCB的中線,求反比例函數的關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,ACB和DCE都是等腰直角三角形,∠ACB=∠DCE=90,連接AE、BD交于點O. AE與DC交于點M,BD與AC交于點N.
(1)如圖①,求證:AE=BD;
(2)如圖②,若AC=DC,在不添加任何輔助線的情況下,請直接寫出圖②中四對全等的直角三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是弦,直線EF經過點C,AD⊥EF于點D,∠DAC=∠BAC.
(1)求證:EF是⊙O的切線;
(2)求證:AC2=AD·AB;
(3)若⊙O的半徑為2,∠ACD=300,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1),在等邊三角形中,
是
邊上的動點,以
為一邊,向上作等邊三角形
,連接
.
(1)和
全等嗎?請說明理由;
(2)試說明:;
(3)如圖(2),將動點運動到邊
的延長線上,所作三角形
仍為等邊三角形,請問是否仍有
?請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com