精英家教網 > 初中數學 > 題目詳情

【題目】y= x+1是關于x的一次函數,則一元二次方程kx2+2x+1=0的根的情況為(
A.沒有實數根
B.有一個實數根
C.有兩個不相等的實數根
D.有兩個相等的實數根

【答案】A
【解析】解:
∵y= x+1是關于x的一次函數,
≠0,
∴k﹣1>0,解得k>1,
又一元二次方程kx2+2x+1=0的判別式△=4﹣4k,
∴△<0,
∴一元二次方程kx2+2x+1=0無實數根,
故選A.
由一次函數的定義可求得k的取值范圍,再根據一元二次方程的判別式可求得答案.本題主要考查一元二次方程根的判別式,掌握一元二次方程的根與判別式的關系是解題的關鍵,即①△>0一元二次方程有兩個不相等的實數根,②△=0一元二次方程有兩個相等的實數根,③△<0一元二次方程無實數根.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】定義,我們把對角線互相垂直的四邊形叫做垂美四邊形.

概念理解:如圖,在四邊形ABCD中,如果AB=AD,CB=CD,那么四邊形ABCD是垂美四邊形嗎?請說明理由.

性質探究:如圖,垂美四邊形ABCD兩組對邊AB、CDBC、AD之間有怎樣的數量關系?寫出你的猜想,并給出證明.

問題解決:如圖,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG 和正方形ABDE,連結CE、BG、GE.若AC=2,AB=5,則求證:△AGB≌△ACE;

②GE=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】探究

問題1 已知:如圖1,三角形ABC中,點DAB邊的中點,AE⊥BC,BF⊥AC,垂足分別為點E,F,AE,BF交于點M,連接DE,DF.若DE=kDF,則k的值為   

拓展

問題2 已知:如圖2,三角形ABC中,CB=CA,點DAB邊的中點,點M在三角形ABC的內部,且∠MAC=∠MBC,過點M分別作ME⊥BC,MF⊥AC,垂足分別為點E,F,連接DE,DF.求證:DE=DF.

推廣

問題3 如圖3,若將上面問題2中的條件“CB=CA”變為“CB≠CA”,其他條件不變,試探究DEDF之間的數量關系,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2016年黔西南州教育局組織全州中小學生參加全省安全知識網絡競賽,在全州安全知識競賽結束后,通過網上查詢,某校一名班主任對本班成績(成績取整數,滿分100分)作了統計分析,繪制成如下頻數分布表和頻數分布直方圖,請你根據圖表提供的信息,解答下列問題:

(1)頻數分布表中a= , b= , c=
(2)補全頻數分布直方圖
(3)為了激勵學生增強安全意識,班主任準備從超過90分的學生中選2人介紹學習經驗,那么取得100分的小亮和小華同時被選上的概率是多少?請用列表法或畫樹狀圖加以說明,并列出所有等可能結果.
頻數分布表

分組(分)

頻數

頻率

50<x 60

2

0.04

60<x 70

12

a

70<x<80

b

0.36

80<x 90

14

0.28

90<x 100

c

0.08

合計

50

1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】王杰同學在解決問題“已知A、B兩點的坐標為A(3,﹣2)、B(6,﹣5)求直線AB關于x軸的對稱直線A′B′的解析式”時,解法如下:先是建立平面直角坐標系(如圖),標出A、B兩點,并利用軸對稱性質求出A′、B′的坐標分別為A′(3,2),B′(6,5);然后設直線A′B′的解析式為y=kx+b(k≠0),并將A′(3,2)、B′(6,5)代入y=kx+b中,得方程組 ,解得 ,最后求得直線A′B′的解析式為y=x﹣1.則在解題過程中他運用到的數學思想是(

A.分類討論與轉化思想
B.分類討論與方程思想
C.數形結合與整體思想
D.數形結合與方程思想

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC的中點為O,過點O作OE⊥BC于點E,連接OD,已知AB=6,BC=8,則四邊形OECD的周長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】“2016國際大數據產業博覽會”于5月25日至5月29日在貴陽舉行.參展內容為:A﹣經濟和社會發展;B﹣產業與應用;C﹣技術與趨勢;D﹣安全和隱私保護;E﹣電子商務,共五大板塊,為了解觀眾對五大板塊的“關注情況”,某機構進行了隨機問卷調查,并將調查結果繪制成如下兩幅統計圖(均不完整),請根據統計圖中提供的信息,解答下列問題:

(1)本次隨機調查了多少名觀眾?
(2)請補全統計圖,并求出扇形統計圖中“D﹣安全和隱私保護”所對應的扇形圓心角的度數.
(3)據相關報道,本次博覽會共吸引力90000名觀眾前來參觀,請估計關注“E﹣電子商務”的人數是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知ABC是等邊三角形,點D在邊BC上,DEABACE,延長DE至點F,使EF=AE,聯結AF、BECF.

(1)求證:EDC是等邊三角形;

(2)找出圖中所有的全等三角形,用符號表示,并對其中的一組加以證明;

(3)若BEAC,試說明點DBC上的位置.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,∠E=F=90°,B=C,AE=AF,給出下列結論:

①∠1=2;BE=CF;③△CAN≌△ABM;CD=DN其中正確的結論是(  )

A. ①② B. ②③ C. ①②③ D. ②③④

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视