【題目】某工廠大門是一拋物線水泥建筑物(如圖),大門地面寬AB=4 m,頂部C離地面高為4.4 m.
(1)以AB所在直線為x軸,拋物線的對稱軸為y軸,建立平面直角坐標系,求該拋物線對應的函數表達式;
(2)現有一輛載滿貨物的汽車欲通過大門,貨物頂點距地面2.8 m,裝貨寬度為2.4 m,請通過計算,判斷這輛汽車能否順利通過大門.
【答案】(1)y=-1.1x2+4.4.(2)這輛汽車能夠通過大門.
【解析】
先過AB的中點作AB的垂直平分線建立直角坐標系,得出點A、B、C的坐標,用待定系數法即可求出過此三點的拋物線解析式,判斷點(-1.2,2.8)或點(1.2,2.8)與拋物線的關系即可.
解:(1)如圖,過AB的中點作AB的垂直平分線,建立平面直角坐標系.點A,B,C的坐標分別為 A(-2,0),B(2,0),C(0,4.4).
設拋物線的表達式為y=a(x-2)(x+2).
將點C(0,4.4)代入得
a(0-2)(0+2)=4.4,解得a=-1.1,
∴y=-1.1(x-2)(x+2)=-1.1x2+4.4.
故此拋物線的表達式為y=-1.1x2+4.4.
(2)∵貨物頂點距地面2.8 m,裝貨寬度為2.4,
∴只要判斷點(-1.2,2.8)或點(1.2,2.8)與拋物線的位置關系即可.
將x=1.2代入拋物線,得 y=2.816>2.8,
∴點(-1.2,2.8)和點(1.2,2.8)都在拋物線內.
∴這輛汽車能夠通過大門.
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c與x軸的一個交點A的坐標為(﹣1,0),對稱軸為直線x=﹣2.
(1)求拋物線與x軸的另一個交點B的坐標;
(2)點D是拋物線與y軸的交點,點C是拋物線上的另一點.已知以AB為一底邊的梯形ABCD的面積為9.求此拋物線的解析式,并指出頂點E的坐標;
(3)點P是(2)中拋物線對稱軸上一動點,且以1個單位/秒的速度從此拋物線的頂點E向上運動.設點P運動的時間為t秒.
①當t為 秒時,△PAD的周長最小?當t為 秒時,△PAD是以AD為腰的等腰三角形?(結果保留根號)
②點P在運動過程中,是否存在一點P,使△PAD是以AD為斜邊的直角三角形?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】直線是同一平面內的一組平行線.
(1)如圖1.正方形的4個頂點都在這些平行線上,若四條直線中相鄰兩條之間的距離都是1,其中點
,點
分別在直線
和
上,求正方形的面積;
(2)如圖2,正方形的4個頂點分別在四條平行線上,若四條直線中相鄰兩條之間的距離依次為
.
①求證:;
②設正方形的面積為
,求證
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】南沙群島是我國固有領土,現在我南海漁民要在南沙某海島附近進行捕魚作業,當漁船航行至B處時,測得該島位于正北方向10(1+)海里的C處,為了防止某國海巡警干擾,請求我A處的漁監船前往C處護航.如圖,已知C位于A處的東北方向上,A位于B的北偏西30°方向上,則A和C之間的距離為( 。
A. 10海里 B. 20
海里 C. 20
海里 D. 10
海里
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=ax2+bx+3(a≠0)過A(4,4),B(2,m)兩點,點B到拋物線對稱軸的距離記為d,滿足0<d≤1,則實數m的取值范圍是( 。
A. m≤2或m≥3 B. m≤3或m≥4 C. 2<m<3 D. 3<m<4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y1=a(x+2)2﹣3與y2=(x﹣3)2+1交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于點B,C.則以下結論:
①無論x取何值,y2的值總是正數;
②a=1;
③當x=0時,y2﹣y1=4
④2AB=3AC.
其中正確結論是______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a,b,c是常數,a≠0)與x軸交于A,B兩點,頂點P(m,n).給出下列結論:①2a+c<0;②若(﹣,y1),(﹣
,y2),(
,y3)在拋物線上,則y1>y2>y3;③關于x的方程ax2+bx+k=0有實數解,則k>c﹣n;④當n=﹣
時,△ABP為等腰直角三角形.其中正確結論是________(填寫序號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=﹣x+3與拋物線交于A、B兩點,點A在x軸上,點B的橫坐標為
.動點P在拋物線上運動(不與點A、B重合),過點P作y軸的平行線,交直線AB于點Q.當PQ不與y軸重合時,以PQ為邊作正方形PQMN,使MN與y軸在PQ的同側,連結PM.設點P的橫坐標為m.
(1)求b、c的值.
(2)當點N落在直線AB上時,直接寫出m的取值范圍.
(3)當點P在A、B兩點之間的拋物線上運動時,設正方形PQMN的周長為C,求C與m之間的函數關系式,并寫出C隨m增大而增大時m的取值范圍.
(4)當△PQM與坐標軸有2個公共點時,直接寫出m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com