【題目】如圖,將矩形ABCD沿AF折疊,使點D落在BC邊的點E處,過點E作EG∥CD交AF于點G,連接DG.
(1)求證:四邊形EFDG是菱形;
(2)探究線段EG、GF、AF之間的數量關系,并說明理由;
(3)若AG=6,EG=2 ,求BE的長.
【答案】
(1)
證明:∵GE∥DF,
∴∠EGF=∠DFG.
∵由翻折的性質可知:GD=GE,DF=EF,∠DGF=∠EGF,
∴∠DGF=∠DFG.
∴GD=DF.
∴DG=GE=DF=EF.
∴四邊形EFDG為菱形
(2)
解:EG2= GFAF.
理由:如圖1所示:連接DE,交AF于點O.
∵四邊形EFDG為菱形,
∴GF⊥DE,OG=OF= GF.
∵∠DOF=∠ADF=90°,∠OFD=∠DFA,
∴△DOF∽△ADF.
∴ ,即DF2=FOAF.
∵FO= GF,DF=EG,
∴EG2= GFAF
(3)
解:如圖2所示:過點G作GH⊥DC,垂足為H.
∵EG2= GFAF,AG=6,EG=2
,
∴20= FG(FG+6),整理得:FG2+6FG﹣40=0.
解得:FG=4,FG=﹣10(舍去).
∵DF=GE=2 ,AF=10,
∴AD= =4
.
∵GH⊥DC,AD⊥DC,
∴GH∥AD.
∴△FGH∽△FAD.
∴ ,即
=
.
∴GH= .
∴BE=AD﹣GH=4 ﹣
=
【解析】(1)先依據翻折的性質和平行線的性質證明∠DGF=∠DFG,從而得到GD=DF,接下來依據翻折的性質可證明DG=GE=DF=EF;(2)連接DE,交AF于點O.由菱形的性質可知GF⊥DE,OG=OF= GF,接下來,證明△DOF∽△ADF,由相似三角形的性質可證明DF2=FOAF,于是可得到GE、AF、FG的數量關系;(3)過點G作GH⊥DC,垂足為H.利用(2)的結論可求得FG=4,然后再△ADF中依據勾股定理可求得AD的長,然后再證明△FGH∽△FAD,利用相似三角形的性質可求得GH的長,最后依據BE=AD﹣GH求解即可.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,CD是AB邊上的中線,E是CD的中點,過點C作AB的平行線交AE的延長線于點F,連接BF.
(1)求證:CF=AD;
(2)若CA=CB,∠ACB=90°,試判斷四邊形CDBF的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,CD為⊙O的直徑,點B在⊙O上,連接BC、BD,過點B的切線AE與CD的延長線交于點A,OE∥BD,交BC于點F,交AB于點E.
(1)求證:∠E=∠C;
(2)若⊙O的半徑為3,AD=2,試求AE的長;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】探究題
(1)問題發現:
如圖1,在正方形ABCD中,點E、F分別是邊BC、AB上的點,且CE=BF,連接DE,過點E作EG⊥DE,使EG=DE,連接FG,FC,請判斷:FG與CE的數量關系是 , 位置關系是 .
(2)拓展探究:
如圖2,若點E、F分別是CB、BA延長線上的點,其它條件不變,(1)中結論是否仍然成立?請出判斷判斷予以證明;
(3)類比延伸:
如圖3,若點E、F分別是BC、AB延長線上的點,其它條件不變,(1)中結論是否仍然成立?請直接寫出你的判斷.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于點E,DF⊥AC于點F.
(1)求證:AB=AC;
(2)若AD=2 ,∠DAC=30°,求AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的四個頂點在坐標軸上,A點坐標為(3,0),假設有甲、乙兩個物體分別由點A同時出發,沿正方形ABCD的邊作環繞運動,物體甲按逆時針方向勻速運動,物體乙按順時針方向勻速運動,如果甲物體12秒鐘可環繞一周回到A點,乙物體24秒鐘可環繞一周回到A點,則兩個物體運動后的第2017次相遇地點的坐標是( )
A.(3,0)
B.(﹣1,2)
C.(﹣3,0)
D.(﹣1,﹣2)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,平面直角坐標系中,矩形ABCD關于y軸對稱,點A,D在x軸上,BC交y軸于點F,E是OF的中點,拋物線y=ax2+bx+c經過B,E,C三點,已知點B(﹣2,﹣2),解答下列問題:
(1)填空:a= , b= , c= .
(2)如圖2,這P是上述拋物線上一點,連接PF并延長交拋物線于另外一點Q,PM⊥x軸于M,QN⊥x軸于N.
①求證:PM+QN=PQ;
②若PQ=m,S四邊形PMNQ= m2 , 求直線PQ對應的一次函數的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀理解:運用“同一圖形的面積相等”可以證明一些含有線段的等式成立,這種解決問題的方法我們稱之為面積法.如圖1,在等腰△ABC中,AB=AC,AC邊上的高為h,點M為底邊BC上的任意一點,點M到腰AB、AC的距離分別為h1、h2 , 連接AM,利用S△ABC=S△ABM+S△ACM , 可以得出結論:h=h1+h2 .
類比探究:在圖1中,當點M在BC的延長線上時,猜想h、h1、h2之間的數量關系并證明你的結論.
拓展應用:如圖2,在平面直角坐標系中,有兩條直線l1:y= x+3,l2:y=﹣3x+3,
若l2上一點M到l1的距離是1,試運用“閱讀理解”和“類比探究”中獲得的結論,求出點M的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com