精英家教網 > 初中數學 > 題目詳情

【題目】如圖,等邊的邊長為,動點P從點A出發,以每秒的速度,沿的方向運動,到達點C時停止,設運動時間為xs),則y關于x的函數的圖象大致是( )

A.B.C.D.

【答案】C

【解析】

CCDAB,則分開兩段函數進行討論:①當點PAB時;②當點PBC時,分別求出解析式,即可得到答案.

解:過CCDAB

AD=1.5cm,CD=cm,點PAB上時,AP=xcm,PD=|1.5-x|cm

y=PC2=2+1.5-x2=x2-3x+90≤x≤3),

該函數圖象是開口向上的拋物線;

②當3x≤6時,即點P在線段BC上時,PC=6-xcm3x≤6);

y=6-x2=x-623x≤6),

∴該函數的圖象是在3x≤6上的拋物線;

故選擇:C

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,點A,B在反比例函數y(x0)的圖象上,點C,D在反比例函數y(k0)的圖象上,ACBDy軸,已知點A,B的橫坐標分別為12,△OAC與△ABD的面積之和為,則k的值為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,反比例函數的圖象與一次函數的圖象交于點、點.

1)求一次函數和反比例函數的解析式;

2)求的面積;

3)直接寫出一次函數值大于反比例函數值的自變量的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線yax2+bx+ca≠0)與x軸相交于A,B兩點,拋物線的對稱軸為直線x=﹣1,其中點A的坐標為(﹣3,0).

1)求點B的坐標;

2)已知a1,C為拋物線與y軸的交點;

①若點P在拋物線上,且SPOC4SBOC,求點P的坐標;

②設點Q是線段AC上的動點,過點QQDy軸交拋物線于點D,求線段QD長度的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,PA、PB切⊙O于A、B兩點,CD切⊙O于點E,分別交PA、PB于點C、D.若PA、PB的長是關于x的一元二次方程x2﹣mx+m﹣1=0的兩個根,求△PCD的周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商家經銷一種綠茶,用于裝修門面已投資4000元已知綠茶每千克成本40元,經研究發現銷量ykg)與銷售單價x(元/kg)之間的函數關系是).以該綠茶的月銷售利潤為w(元)[銷售利潤(每千克單價每千克成本)銷售量]

1)求m與之間的函數關系式,并求出x為何值時,w的值最大?

2)若在第一個月里,按使w獲得最大值的銷售單價進行銷售后,在第二個月里受物價部門干預,銷售單價不得高于85元,要想在全部收回投資的基礎上使第二個月的利潤達到2200元,那么第二個月里應該確定銷售單價為多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校在“創新素質實踐行”活動中,組織學生進行社會調查,并對學生的調查報告進行了評比,如圖是將某年級60篇學生調查報告的成績進行整理,分成5組畫出的頻率分布直方圖,已知從左至右4個小組的頻率分別是0.050.15,0.35,0.30.那么在這次評比中,被評為優秀(分數大于或等于80分為優秀,且分數為整數)的調查報告有(

A.18B.24C.25D.27

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在平面直角坐標系xOy中,拋物線C:y=ax2+bx+cx軸相交于A,B兩點,頂點為D(0,4),AB=4,設點F(m,0)x軸的正半軸上一點,將拋物線C繞點F旋轉180°,得到新的拋物線C/

(1)求拋物線C的函數表達式;

(2)若拋物線C/與拋物線Cy軸的右側有兩個不同的公共點,求m的取值范圍.

(3)如圖2,P是第一象限內拋物線C上一點,它到兩坐標軸的距離相等,點P在拋物線C/上的對應點P/,設MC上的動點,NC/上的動點,試探究四邊形PMP/N能否成為正方形?若能,請直接寫出m的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,點E為邊AB上一動點,連結CE并將其繞點C順時針旋轉90°得到CF,連結DF,以CECF為鄰邊作矩形CFGE,GEAD、AC分別交于點H、MGFCD延長線于點N

1)證明:點A、D、F在同一條直線上;

2)隨著點E的移動,線段DH是否有最小值?若有,求出最小值;若沒有,請說明理由;

3)連結EF、MN,當MNEF時,求AE的長.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视