【題目】如圖1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°
(1)請判斷AB與CD的位置關系并說明理由;
(2)如圖2,當∠E=90°且AB與CD的位置關系保持不變,移動直角頂點E,使∠MCE=∠ECD,當直角頂點E點移動時,問∠BAE與∠MCD否存在確定的數量關系?并說明理由;
(3)如圖3,P為線段AC上一定點,點Q為直線CD上一動點且AB與CD的位置關系保持不變,當點Q在射線CD上運動時(點C除外)∠CPQ+∠CQP與∠BAC有何數量關系?猜想結論并說明理由.
【答案】(1)AB∥CD,理由見解析;(2)∠BAE+∠MCD=90°,理由見解析;(3)∠BAC=∠PQC+∠QPC,理由見解析
【解析】
(1)先根據CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,故可得出結論;
(2)過E作EF∥AB,根據平行線的性質可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出結論;
(3)根據AB∥CD可知∠BAC+∠ACD=180°,∠QPC+∠PQC+∠PCQ=180°,故∠BAC=∠PQC+∠QPC.
(1)∵CE平分∠ACD,AE平分∠BAC,
∴∠BAC=2∠EAC,∠ACD=2∠ACE,
∵∠EAC+∠ACE=90°,
∴∠BAC+∠ACD=180°,
∴AB∥CD;
(2)∠BAE+∠MCD=90°;
過E作EF∥AB,
∵AB∥CD,
∴EF∥AB∥CD,
∴∠BAE=∠AEF,∠FEC=∠DCE,
∵∠E=90°,
∴∠BAE+∠ECD=90°,
∵∠MCE=∠ECD,
∴∠BAE+∠MCD=90°;
(3)∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵∠QPC+∠PQC+∠PCQ=180°,
∴∠BAC=∠PQC+∠QPC.
科目:初中數學 來源: 題型:
【題目】閱讀理解:
數軸上線段的長度可以用線段端點表示的數進行減法運算得到,例如圖,線段AB=1=0﹣(﹣1);線段 BC=2=2﹣0;線段 AC=3=2﹣(﹣1)問題
①數軸上點M、N代表的數分別為﹣9和1,則線段MN= ;
②數軸上點E、F代表的數分別為﹣6和﹣3,則線段EF= ;
③數軸上的兩個點之間的距離為5,其中一個點表示的數為2,則另一個點表示的數為m,求m.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知一次函數y=x-3與反比例函數y=
的圖象相交于點A(4,n),與x軸相交于點B.
(1)填空:n的值為 ,k的值為 ;
(2)以AB為邊作菱形ABCD,使點C在x軸正半軸上,點D在第一象限,求點D的坐標;
(3)觀察反比函數y=的圖象,當y≥-2時,請直接寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司計劃購買A、B兩種計算器共100個,要求A種計算器數量不低于B種的,且不高于B種的
.已知A、B兩種計算器的單價分別是150元/個、100元/個,設購買A種計算器x個.
(1)求計劃購買這兩種計算器所需費用y(元)與x的函數關系式;
(2)問該公司按計劃購買者兩種計算器有多少種方案?
(3)由于市場行情波動,實際購買時,A種計算器單價下調了3m(m>0)元/個,同時B種計算器單價上調了2m元/個,此時購買這兩種計算器所需最少費用為12150元,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算(寫出計算過程)
(1)(-35) + 18 + (-5) + (+22)
(2)
(3)
(4)
(5)
(6)9+5×(-3)-(-2)2÷4
(7)(-22)×(-3)2+(-32)÷4;
(8)﹣32+1÷4×﹣|﹣1
|×(﹣0.5)2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】初一(1)班針對“你最喜愛的課外活動項目”對全班學生進行調查(每名學生分別選一個活動項目),并根據調查結果列出統計表,繪制成扇形統計圖.
根據以上信息解決下列問題:
(1) ,
;
(2)扇形統計圖中機器人項目所對應扇形的圓心角度數為 ;
(3)從選航模項目的名學生中隨機選取
名學生參加學校航模興趣小組訓練,請用列舉法(畫樹狀圖或列表)求所選取的
名學生中恰好有
名男生、
名女生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】10個人圍成一圈做游戲.游戲的規則是:每個人心里都想一個數,并把目己想的數告訴與他相鄰的兩個人,然后每個人將與他相鄰的兩個人告訴他的數的平均數報出來,若報出來的數如圖所示,則報出來的數是3的人心里想的數是( )
A.2B.C.4D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com