精英家教網 > 初中數學 > 題目詳情
二次函數y=ax2+bx+c(a≠0,a、b、c是常數)中自變量x與函數y的對應值如下,一元二次方程ax2+bx+c=0的兩個根x1、x2的取值范圍是( 。
x -1 -
1
2
0
1
2
1
3
2
2
5
2
3
y -2 -
1
4
1
7
4
2
7
4
1 -
1
4
-2
A、-
1
2
<x1<0,
3
2
<x2<2
B、-1<x1-
1
2
,2<x2
5
2
C、-
1
2
<x1<0,2<x2
5
2
D、-1<x1-
1
2
3
2
<x2<2
分析:根據函數y=ax2+bx+c的圖象與x軸的交點的橫坐標就是方程ax2+bx+c=0的根,再根據函數的增減性即可判斷方程ax2+bx+c=0兩個根的范圍.
解答:解:函數y=ax2+bx+c的圖象與x軸的交點就是方程ax2+bx+c=0的根,函數y=ax2+bx+c的圖象與x軸的交點的縱坐標為0.
由表中數據可知:y=0在y=-
1
4
與y=1之間,
∴對應的x的值在-
1
2
1
2
之間,即-
1
2
<x1
1
2

y=0在y=1與y=-
1
4
之間,∴對應的x的值在2與
5
2
之間,即
5
2
<x1<2.
故選C.
點評:掌握函數y=ax2+bx+c的圖象與x軸的交點與方程ax2+bx+c=0的根的關系是解決此題的關鍵所在.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(-3,0)、B兩點,與y軸交于精英家教網點C(0,
3
)
,當x=-4和x=2時,二次函數y=ax2+bx+c(a≠0)的函數值y相等,連接AC、BC.
(1)求實數a,b,c的值;
(2)若點M、N同時從B點出發,均以每秒1個單位長度的速度分別沿BA、BC邊運動,其中一個點到達終點時,另一點也隨之停止運動,當運動時間為t秒時,連接MN,將△BMN沿MN翻折,B點恰好落在AC邊上的P處,求t的值及點P的坐標;
(3)在(2)的條件下,拋物線的對稱軸上是否存在點Q,使得以B,N,Q為頂點的三角形與△ABC相似?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

二次函數y=ax2+bx+c,當x=
12
時,有最大值25,而方程ax2+bx+c=0的兩根α、β,滿足α33=19,求a、b、c.

查看答案和解析>>

科目:初中數學 來源: 題型:

如果二次函數y=ax2+bx+c的圖象的頂點坐標是(2,4),且直線y=x+4依次與y軸和拋物線相交于P、Q、R三點,PQ:QR=1:3,求這個二次函數解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖為二次函數y=ax2+bx+c(a≠0)的圖象,則下列說法:①abc>0;②2a+b=0;③a+b+c>0;④當-1<x<3時,y>0.其中正確結論的序號是
②③④
②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•孝感)二次函數y=ax2+bx+c(a,b,c是常數,a≠0)圖象的對稱軸是直線x=1,其圖象的一部分如圖所示.對于下列說法:
①abc<0;②a-b+c<0;③3a+c<0;④當-1<x<3時,y>0.
其中正確的是
①②③
①②③
(把正確的序號都填上).

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视