【題目】如圖,在⊙O中,半徑OA⊥弦BC于點H,點D在優弧BC上
(1)若∠AOB=50°,求∠ADC的度數;
(2)若BC=8,AH=2,求⊙O的半徑.
【答案】
【解析】(1)∠ADC=25°;(2)⊙O的半徑為5.
試題分析:(1)根據垂徑定理可得=
,再根據圓周角定理可得∠ADC=
∠AOB,進而可得答案;
(2)根據垂徑定理可得BH=4,設HO=x,則AO=BO=x+2,在Rt△BHO中利用勾股定理可得(x+2)2=x2+42,解方程可得x的值,從而可得答案.
解:(1)∵半徑OA⊥弦BC于點H,
∴=
,
∴∠ADC=∠AOB,
∵∠AOB=50°,
∴∠ADC=25°;
(2)∵半徑OA⊥弦BC于點H,
∴BH=BC,
∵BC=8,
∴BH=4,
設HO=x,則AO=BO=x+2,
在Rt△BHO中,BO2=HO2+BH2,
∴(x+2)2=x2+42,
解得:x=3,
∴AO=5.
答:⊙O的半徑為5.
科目:初中數學 來源: 題型:
【題目】按圖填空, 并注明理由
已知: 如圖, ∠1=∠2, ∠3=∠E. 求證: AD∥BE
證明: ∵∠1 = ∠2 (已知)
∴ ∥ ( )
∴ ∠E = ∠ ( )
又∵ ∠E = ∠3 ( 已知 )
∴ ∠3 = ∠ ( 等量代換 )
∴ ∥ ( 內錯角相等,兩直線平行 )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某制藥廠兩年前生成1噸某種藥品的成本是100萬元,隨著生產技術的進步,現在生產1噸這種藥品的成本為81萬元,設這種藥品成本的年平均下降率為x,根據題意所列方程為( )
A.100(1+x)2=81
B.100(1﹣x)2=81
C.81(1+x)2=100
D.81(1﹣x)2=100
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解中考體育科目訓練情況,某縣從全縣九年級學生中隨機抽取了部分學生進行了一次中考體育科目測試(把測試結果分為四個等級:A級:優秀;B級:良好;C級:及格;D級:不及格),并將測試結果繪成了如下兩幅不完整的統計圖.請根據統計圖中的信息解答下列問題:
(1)本次抽樣測試的學生人數是 ;
(2)圖1中∠α的度數是 ,并把圖2條形統計圖補充完整;
(3)該縣九年級有學生3500名,如果全部參加這次中考體育科目測試,請估計不及格的人數為 .
(4)測試老師想從4位同學(分別記為E、F、G、H,其中E為小明)中隨機選擇兩位同學了解平時訓練情況,請用列表或畫樹形圖的方法求出選中小明的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,正方形ABCO的頂點A、C分別在y軸、x軸上,以AB為弦的⊙M與x軸相切,若點A的坐標為(0,﹣4),則圓心M的坐標為( )
A.(﹣2,2.5) B.(2,﹣1.5) C.(2.5,﹣2) D.(2,﹣2.5)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com