【題目】如圖1,在矩形ABCD中,AB=4,AD=5,E為射線BC上一點,DF⊥AE于F,連結DE.
(1)當E在線段BC上時
①若DE=5,求BE的長;
②若CE=EF,求證:AD=AE;
(2)連結BF,在點E的運動過程中:
①當△ABF是以AB為底的等腰三角形時,求BE的長;
②記△ADF的面積為S1,記△DCE的面積為S2,當BF∥DE時,請直接寫出S1:S2的值.
【答案】(1)①BE=2;②證明見解析;(2)①BE=2;②S1:S2=1
【解析】(1)①在矩形 ABCD 中,∠B=∠DCE=90°,BC=AD=5,DC=AB=4,由勾股定理求得CE的長,即可求得BE的長;
②證明△CED≌△DEF,可得∠CED=∠FED,從而可得∠ADE=∠AED,即可得到AD=AE;
(2)①分兩種情況點 E 在線段 BC 上、點 E 在 BC 延長線上兩種情況分別討論即可得;
②S1:S2=1,當 BF//DE 時,延長 BF 交 AD 于 G,由已知可得到四邊形 BEDG 是平行四邊形,繼而可得S△DEF=S平行四邊形 BEDG,S △BEF+S△ DFG=
S平行四邊形 BEDG,S△ABG=S△CDE,根據面積的知差即可求得結論.
(1)①在矩形 ABCD 中,∠B=∠DCE=90°,
BC=AD=5,DC=AB=4,
∵DE=5,
∴CE==3,
∴BE=BC-CE=5-3=2;
②在矩形 ABCD 中,∠DCE=90°,AD//BC,
∴∠ADE=∠DEC,∠DCE=∠DFE,
∵CE=EF,DE=DE,
∴△CED≌△DEF(HL),
∴∠CED=∠FED,
∴∠ADE=∠AED,
∴AD=AE;
(2)①當點 E 在線段 BC 上時,AF=BF,如圖所示:
∴∠ABF=∠BAF,
∵∠ABF+∠EBF=90°,
∠BAF+∠BEF=90°,
∴∠EBF=∠BEF,
∴EF=BF ,∴AF=EF,
∵DF⊥AE,
∴DE=AD=5,
在矩形 ABCD 中,CD=AB=4,∠DCE=90°,
∴CE=3,
∴BE=5-3=2;
當點 E 在 BC 延長線上時,AF=BF,如圖所示,
同理可證 AF=EF,
∵DF⊥AE,
∴DE=AD=5,
在矩形 ABCD 中,CD=AB=4,∠DCE=90°,
∴CE=3,
∴BE=5+3=8,
綜上所述,可知BE=2或8;
②S1:S2=1,解答參考如下:
當 BF//DE 時,延長 BF 交 AD 于 G,
在矩形 ABCD 中,AD//BC,AD=BC,AB=CD,
∠BAG=∠DCE=90°,
∵BF//DE,
∴四邊形 BEDG 是平行四邊形,
∴BE=DG,S△DEF=S平行四邊形 BEDG,
∴AG=CE,S △BEF+S△ DFG= S平行四邊形 BEDG,
∴△ABG≌△CDE,
∴S△ABG=S△CDE,
∵S △ABE= S平行四邊形 BEDG,
∴S△ABE=S△BEF+S△DFG,
∴S△ABF=S△DFG,
∴S△ABF+S△AFG=S△DFG+S△AFG即 S△ABG=S△ADF,
∴S△CDE=S△ADF,即 S1:S2=1.
科目:初中數學 來源: 題型:
【題目】【背景知識】數軸是初中數學的一個重要工具,利用數軸可以將數與形完美地結 合.研究數軸我們發現了許多重要的規律:若數軸上點 A、點 B 表示的數分別為 a、b,則A、B 兩點之間的距離 AB= ,線段 AB 的中點表示的數為
.
【問題情境】如圖,數軸上點A表示的數為-2,點B表示的數為8,點P從點 A 出發, 以每秒3個單位長度的速度沿數軸向右勻速運動,同時點Q從點B出發,以每秒 2個單 位長度的速度向左勻速運動,設運動時間為t秒(t>0).
【綜合運用】(1) 填空:
①A、B兩點之間的距離AB=__________,線段AB的中點表示的數為_______;
②用含t的代數式表示:t秒后,點P表示的數為_______;點Q表示的數為_____.
(2) 求當t為何值時,P、Q 兩點相遇,并寫出相遇點所表示的數;
(3)求當t為何值時,PQ=AB;
(4)若點M為PA的中點,點N為PB的中點,點 P在運動過程中,線段MN的長度是否發 生變化?若變化,請說明理由;若不變,請求出線段MN的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩校派相同人數的優秀學生,參加縣教育局舉辦的中小學生美文誦讀決賽。比賽結束后,發現學生成績分別是7分、8分、9分或10分(滿分10分),核分員依據統計數據繪制了如下尚不完整的統計圖表。根據這些材料,請你回答下列問題:
甲校成績統計表 | ||||
成績 | 7分 | 8分 | 9分 | 10分 |
人數 | 11 | 0 | 8 |
(1)在圖①中,“7分”所在扇形的圓心角等于_______
(2)求圖②中,“8分”的人數,并請你將該統計圖補充完整。
(3)經計算,乙校學生成績的平均數是8.3分,中位數是8分。請你計算甲校學生成績的平均數、中位數,并從平均數和中位數的角度分析哪個學校的成績較好?
(4)如果教育局要組織8人的代表隊參加市級團體賽,為便于管理,決定從這兩所學校中的一所挑選參賽選手,請你分析,應選哪所學校?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】現在,蘇寧商場進行促銷活動,出售一種優惠購物卡(注:此卡只作為購物優惠憑證不能頂替貨款),花300元買這種卡后,憑卡可在這家商場按標價的8折購物.
(1)顧客購買多少元金額的商品時,買卡與不買卡花錢相等?在什么情況下購物合算?
(2)小張要買一臺標價為3500元的冰箱,如何購買合算?小張能節省多少元錢?
(3)小張按合算的方案,把這臺冰箱買下,如果商場還能盈利25%,這臺冰箱的進價是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明家準備給邊長為6m的正方形客廳用黑色和白色兩種瓷磚鋪設,如圖所示:①黑色瓷磚區域Ⅰ:位于四個角的邊長相同的小正方形及寬度相等的回字型邊框(陰影部分),②白色瓷磚區域Ⅱ:四個全等的長方形及客廳中心的正方形(空白部分).設四個角上的小正方形的邊長為x(m).
(1)當x=0.8時,若客廳中心的正方形瓷磚鋪設的面積為16m2,求回字型黑色邊框的寬度;
(2)若客廳中心的正方形邊長為4m,白色瓷磚區域Ⅱ的總面積為26m2,求x的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某廠按用戶的月需求量x(件)完成一種產品的生產,其中x>0,每件的售價為18萬元,每件的成本y(萬元)是基礎價與浮動價的和,其中基礎價保持不變,浮動價與月需求量x(件)成反比,經市場調研發現,月需求量x與月份n(n為整數,1≤n≤12),符合關系式x=2n2﹣2kn+9(k+3)(k為常數),且得到了表中的數據.
月份n(月) | 1 | 2 |
成本y(萬元/件) | 11 | 12 |
需求量x(件/月) | 120 | 100 |
(1)求y與x滿足的關系式,請說明一件產品的利潤能否是12萬元;
(2)求k,并推斷是否存在某個月既無盈利也不虧損;
(3)在這一年12個月中,若第m個月和第(m+1)個月的利潤相差最大,求m.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】根據解答過程填空(理由或數學式)
如圖,已知∠1=∠2,∠D=60°,求∠B的度數.
解∵∠2=∠3( )
又∵∠1=∠2(已知),
∴∠3=∠1(等量代換)
∴ ∥ ( )
∴∠D+∠B=180°( )
又∵∠D=60°(已知),
∴∠B= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,兩個形狀、大小完全相同的含有30゜和60゜的三角板如圖放置,PA、PB與直線MN重合,且三角板PAC,三角板PBD均可以繞點P逆時針旋轉.
(1)試說明:∠DPC=90゜;
(2)如圖2,若三角板PAC的邊PA從PN處開始繞點P逆時針旋轉一定角度,PF平分∠APD,PE平分∠CPD,求∠EPF;
(3)如圖3,若三角板PAC的邊PA從PN處開始繞點P逆時針旋轉,轉速為3゜/秒,同時三角板PBD的邊PB從PM處開始繞點P逆時針旋轉,轉速為2゜/秒,在兩個三角板旋轉過程中(PC轉到與PM重合時,兩三角板都停止轉動),以下兩個結論:①為定值;②∠BPN+∠CPD為定值,請選出正確的結論,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com