精英家教網 > 初中數學 > 題目詳情

【題目】如圖1,點O是正方形ABCD兩對角線的交點,分別延長OD到點G,OC到點E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE.

(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉α角(0°<α<360°)得到正方形OE′F′G′,如圖2.

①在旋轉過程中,當∠OAG′是直角時,求α的度數;
②若正方形ABCD的邊長為1,在旋轉過程中,求AF′長的最大值和此時α的度數,直接寫出結果不必說明理由.

【答案】
(1)

證明:如圖1,

延長ED交AG于點H,

∵點O是正方形ABCD兩對角線的交點,

∴OA=OD,OA⊥OD,

∵OG=OE,

在△AOG和△DOE中,

,

∴△AOG≌△DOE,

∴∠AGO=∠DEO,

∵∠AGO+∠GAO=90°,

∴∠GAO+∠DEO=90°,

∴∠AHE=90°,

即DE⊥AG


(2)

解:①在旋轉過程中,∠OAG′成為直角有兩種情況:

(Ⅰ)α由0°增大到90°過程中,當∠OAG′=90°時,

∵OA=OD= OG= OG′,

∴在Rt△OAG′中,sin∠AG′O= =

∴∠AG′O=30°,

∵OA⊥OD,OA⊥AG′,

∴OD∥AG′,

∴∠DOG′=∠AG′O=30°,

即α=30°;

(Ⅱ)α由90°增大到180°過程中,當∠OAG′=90°時,

同理可求∠BOG′=30°,

∴α=180°﹣30°=150°.

綜上所述,當∠OAG′=90°時,α=30°或150°.

②如圖3,當旋轉到A、O、F′在一條直線上時,AF′的長最大,

∵正方形ABCD的邊長為1,

∴OA=OD=OC=OB= ,

∵OG=2OD,

∴OG′=OG=

∴OF′=2,

∴AF′=AO+OF′= +2,

∵∠COE′=45°,

∴此時α=315°.


【解析】(1)延長ED交AG于點H,易證△AOG≌△DOE,得到∠AGO=∠DEO,然后運用等量代換證明∠AHE=90°即可;(2)①在旋轉過程中,∠OAG′成為直角有兩種情況:α由0°增大到90°過程中,當∠OAG′=90°時,α=30°,α由90°增大到180°過程中,當∠OAG′=90°時,α=150°;②當旋轉到A、O、F′在一條直線上時,AF′的長最大,AF′=AO+OF′= +2,此時α=315°.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某商家預測一種應季襯衫能暢銷市場,就用13200元購進了一批這種襯衫,面市后果然供不應求,商家又用28800元購進了第二批這種襯衫,所購數量是第一批購進量的2倍,但單價貴了10元.
(1)該商家購進的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標價銷售,最后剩下50件按八折優惠賣出,如果兩批襯衫全部售完后利潤不低于25%(不考慮其他因素),那么每件襯衫的標價至少是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,Rt△ABC中,∠BAC=90°,∠C=30°,BC=2,⊙O是△ABC的外接圓,D是CB延長線上一點,且BD=1,連接DA,點P是射線DA上的動點.
(1)求證DA是⊙O的切線;
(2)DP的長度為多少時,∠BPC的度數最大,最大度數是多少?請說明理由.
(3)P運動的過程中,(PB+PC)的值能否達到最小,若能,求出這個最小值,若不能,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在⊙O中,直徑AB⊥CD,垂足為E,點M在OC上,AM的延長線交⊙O于點G,交過C的直線于F,∠1=∠2,連結CB與DG交于點N.
(1)求證:CF是⊙O的切線;
(2)求證:△ACM∽△DCN;
(3)若點M是CO的中點,⊙O的半徑為4,cos∠BOC= ,求BN的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點O是△ABC內一點,連結OB、OC,并將AB、OB、OC、AC的中點D、E、F、G依次連結,得到四邊形DEFG.
(1)求證:四邊形DEFG是平行四邊形;
(2)如果∠OBC=45°,∠OCB=30°,OC=4,求EF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD中,點E為對角線AC上一點,且AE=AB,則∠BED的度數是度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下列材料:
社會消費品零售總額是指批發和零售業,住宿和餐飲業以及其他行業直接售給城鄉居民和社會集團的消費品零售額,在各類與消費有關的統計數據中,社會消費品零售總額是表現國內消費需求最直接的數據.
2012年,北京市全年實現社會消費品零售總額7702.8億元,比上一年增長11.6%,2013年,全年實現社會消費品零售總額8375.1億元,比上一年增長8.7%,2014年,全年實現社會消費品零售總額9098.1億元,比上一年增長8.6%,2015年,全年實現社會消費品零售總額10338億元,比上一年增長7.3%.
2016年,北京市實現市場總消費19926.2億元,比上一年增長了8.1%,其中實現服務性消費8921.1億元,增長10.1%;實現社會消費品零售總額11005.1億元,比上一年增長了6.5%.
根據以上材料解答下列問題:
(1)補全統計表:
2012﹣2016年北京市社會消費品零售總額統計表

年份

2012年

2013年

2014年

2015年

2016年

社會消費品零售總額(單位:億元)


(2)選擇適當的統計圖將2012﹣2016年北京市社會消費品零售總額比上一年的增長率表示出來,并在圖中表明相應數據;
(3)根據以上信息,估計2017年北京市社會消費品零售總額比上一年的增長率約為 , 你的預估理由是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,點E在AB邊上,點F在BC邊的延長線上,且AE=CF
(1)求證:△AED≌△CFD;
(2)將△AED按逆時針方向至少旋轉多少度才能與△CFD重合,旋轉中心是什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某公司生產的某種商品每件成本為20元,經過市場調研發現,這種商品在未來40天內的日銷售量m(件)與時間t(天)的關系如下表:

時間t(天)

1

3

5

10

36

日銷售量m(件)

94

90

86

76

24

未來40天內,前20天每天的價格y1(元/件)與時間t(天)的函數關系式為y1= t+25(1≤t≤20且t為整數),后20天每天的價格y2(元/件)與時間t(天)的函數關系式為y2=﹣ t+40(21≤t≤40且t為整數).
下面我們就來研究銷售這種商品的有關問題:
(1)認真分析上表中的數據,用所學過的一次函數、二次函數、反比例函數的知識確定一個滿足這些數據的m(件)與t(天)之間的表達式;
(2)請預測未來40天中哪一天的日銷售利潤最大,最大日銷售利潤是多少?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视