【題目】如圖,已知直線a∥b,a,b之間的距離為4,點P到直線a的距離為4,點Q到直線b的距離為2,PQ=2.在直線a上有一動點A,直線b上有一動點B,滿足AB⊥b,且PA+AB+BQ最小,此時PA+BQ=________.
科目:初中數學 來源: 題型:
【題目】如圖,AB=12cm,點C是線段AB上的一點,BC=2AC.動點P從點A出發,以3cm/s的速度向右運動,到達點B后立即返回,以3cm/s的速度向左運動;動點Q從點C出發,以1cm/s的速度向右運動.設它們同時出發,運動時間為ts.當點P與點Q第二次重合時,P,Q兩點停止運動.
(1)AC= cm,BC= cm;
(2)當t為何值時,AP=PQ;
(3)當t為何值時,P與Q第一次相遇;
(4)當t為何值時,PQ=1cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們來定義一種新運算:對于任意實數x、y,“※”為a※b=(a+1)(b+1)﹣1
(1)計算(﹣3)※9
(2)嘉琪研究運算“※”之后認為它滿足交換律,你認為她的判斷 (正確、錯誤)
(3)請你幫助嘉琪完成她對運算“※”是否滿足結合律的證明.
證明:由已知把原式化簡得a※b=(a+1)(b+1)﹣1=ab+a+b
∵(a※b)※c=(ab+a+b)※c=
a※(b※c)=
∴
∴運算“※”滿足結合律.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某科技有限公司準備購進A和B兩種機器人來搬運化工材料,已知購進A種機器人2個和B種機器人3個共需16萬元,購進A種機器人3個和B種機器人2個共需14萬元,請解答下列問題:
(1)求A、B兩種機器人每個的進價;
(2)已知該公司購買B種機器人的個數比購買A種機器人的個數的2倍多4個,如果需要購買A、B兩種機器人的總個數不少于28個,且該公司購買的A、B兩種機器人的總費用不超過106萬元,那么該公司有哪幾種購買方案?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:用2輛A型車和1輛B型車裝滿貨物一次可運貨10噸;用1輛A型車和2輛B型車裝滿貨物一次可運貨11噸.某物流公司現有31噸貨物,計劃同時租用A型車輛,B型車
輛,一次運完,且恰好每輛車都裝滿貨物. 根據以上信息,解答下列問題:
(1)1輛A型車和1輛B型車都裝滿貨物一次可分別運貨多少噸?
(2)請你幫該物流公司設計租車方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB=AC,CF⊥AB于F,BE⊥AC于E,CF與BE交于點D.有下列結論:
①△ABE≌△ACF;②△BDF≌△CDE;③點D在∠BAC的平分線上;④CF是AB的垂直平分線.以上結論正確的有( )個.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在路邊安裝路燈,燈柱BC高15m,與燈桿AB的夾角ABC為120°.路燈采用錐形燈罩,照射范圍DE長為18.9m,從D、E兩處測得路燈A的仰角分別為∠ADE=80.5°,∠AED=45°.求燈桿AB的長度.(參考數據:cos80.5°≈0.2,tan80.5°≈6.0)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,CA=CB,∠ACB=90°,AB=2,點D為AB的中點,以點D為圓心作圓心角為90°的扇形DEF,點C恰在弧EF上,則圖中陰影部分的面積為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com