【題目】已知二次函數y=ax2+bx+c(a≠0)的部分圖象如圖所示,則關于x的一元一次方程ax2+bx+c=2(a≠0)的解為 .
科目:初中數學 來源: 題型:
【題目】如圖,C,E是直線l兩側的點,以C為圓心,CE長為半徑畫弧交l于A,B兩點,又分別以A,B為圓心,大于 AB的長為半徑畫弧,兩弧交于點D,連接CA,CB,CD,下列結論不一定正確的是( )
A.CD⊥l
B.點A,B關于直線CD對稱
C.點C,D關于直線l對稱
D.CD平分∠ACB
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點O在AB上,經過點A的⊙O與BC相切于點D,與AC,AB分別相交于點E,F,連接AD與EF相交于點G.
(1)求證:AD平分∠CAB;
(2)若OH⊥AD于點H,FH平分∠AFE,DG=1.
①試判斷DF與DH的數量關系,并說明理由;
②求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=ax2+bx+c的圖象開口向上,對稱軸為直線x=1,圖象經過(3,0),下列結論中,正確的一項是( )
A.abc<0
B.2a+b<0
C.a﹣b+c<0
D.4ac﹣b2<0
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:二次函數y=ax2+bx+6(a≠0)的圖象與x軸交于A,B兩點(點A在點B的左側,與y軸交于點C,點A、點B的橫坐標是一元二次方程x2﹣4x﹣12=0的兩個根.
(1)請直接寫出點A、點B的坐標.
(2)請求出該二次函數表達式及對稱軸和頂點坐標.
(3)如圖,在二次函數對稱軸上是否存在點P,使△APC的周長最?若存在,請求出點P的坐標;若不存在,那個說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,隧道的截面由拋物線和長方形構成.長方形的長為12m,寬為5m,拋物線的最高點C離路面AA1的距離為8m,建立如圖所示的直角坐標系.
(1)求該拋物線的函數表達式,并求出自變量x的取值范圍;
(2)一大型貨運汽車裝載大型設備后高為6m,寬為4m.如果該隧道內設雙向行車道,那么這輛貨車能否安全通過?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=2,且拋物線經過A(﹣1,0),C(0,﹣5)兩點,與x軸交于點B.
(1)若直線y=mx+n經過B、C兩點,求直線BC和拋物線的解析式;
(2)設點P為拋物線上的一個動點,連接PB、PC,若△BPC是以BC為直角邊的直角三角形,求此時點P的坐標;
(3)在拋物線上BC段有另一個動點Q,以點Q為圓心作⊙Q,使得⊙Q與直線BC相切,在運動的過程中是否存在一個最大⊙Q?若存在,請直接寫出最大⊙Q的半徑;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD,AB=6,點E在邊CD上,CE=2DE,將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF,下列結論:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FCA=3.6,其中正確結論是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com