【題目】如圖,菱形ABCD中,點P是CD的中點,∠BCD=60°,射線AP交BC的延長線于點E,射線BP交DE于點K,點O是線段BK的中點,作BM⊥AE于點M,作KN⊥AE于點N,連結MO、NO,以下四個結論:①△OMN是等腰三角形;②tan∠OMN=;③BP=4PK;④PMPA=3PD2,其中正確的是( 。
A. ①②③ B. ①②④ C. ①③④ D. ②③④
【答案】B
【解析】試題分析:根據菱形的性質得到AD∥BC,根據平行線的性質得到對應角相等,根據全等三角形的判定定理△ADP≌△ECP,由相似三角形的性質得到AD=CE,作PI∥CE交DE于I,根據點P是CD的中點證明CE=2PI,BE=4PI,根據相似三角形的性質得到=
,得到BP=3PK,故③錯誤;作OG⊥AE于G,根據平行線等分線段定理得到MG=NG,又OG⊥MN,證明△MON是等腰三角形,故①正確;根據直角三角形的性質和銳角三角函數求出∠OMN=
,故②正確;然后根據射影定理和三角函數即可得到PMPA=3PD2,故④正確.
解:作PI∥CE交DE于I,
∵四邊形ABCD為菱形,
∴AD∥BC,
∴∠DAP=∠CEP,∠ADP=∠ECP,
在△ADP和△ECP中,
,
∴△ADP≌△ECP,
∴AD=CE,
則,又點P是CD的中點,
∴=
,
∵AD=CE,
∴=
,
∴BP=3PK,
故③錯誤;
作OG⊥AE于G,
∵BM丄AE于M,KN丄AE于N,
∴BM∥OG∥KN,
∵點O是線段BK的中點,
∴MG=NG,又OG⊥MN,
∴OM=ON,
即△MON是等腰三角形,故①正確;
由題意得,△BPC,△AMB,△ABP為直角三角形,
設BC=2,則CP=1,由勾股定理得,BP=,
則AP=,
根據三角形面積公式,BM=,
∵點O是線段BK的中點,
∴PB=3PO,
∴OG=BM=
,
MG=MP=
,
tan∠OMN==
,故②正確;
∵∠AP=90°,BM⊥AP,
∴PB2=PMPA,
∵∠BCD=60°,
∴∠ABC=120°,
∴∠PBC=30°,
∴∠BPC=90°,
∴PB=PC,
∵PD=PC,
∴PB2=3PD,
∴PMPA=3PD2,故④正確.
故選B.
科目:初中數學 來源: 題型:
【題目】 如圖,邊長為6的大正方形中有兩個小正方形,若兩個小正方形的面積分別為S1,S2,則S1+S2的值為( )
A.16 B.17 C.18 D. 19
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列式子中,從左到右的變形是因式分解的是( )
A.(x﹣1)(x﹣2)=x2﹣3x+2
B.x2﹣3x+2=(x﹣1)(x﹣2)
C.x2+4x+4=x(x﹣4)+4
D.x2+y2=(x+y)(x﹣y)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com