【題目】如圖,在ABCD中,AB=2 cm,AD=4cm,AC⊥BC,則△DBC比△ABC的周長長cm.
科目:初中數學 來源: 題型:
【題目】如圖,已知數軸上點A表示的數為6,B是數軸上一點,且AB=10.動點P從點O出發,以每秒6個單位長度的速度沿數軸向右勻速運動,設運動時間為t(t>0)秒.
(1)寫出數軸上點B表示的數 ;當t=3時,OP=
(2)動點R從點B出發,以每秒8個單位長度的速度沿數軸向右勻速運動,若點P,R同時出發,問點R運動多少秒時追上點P?
(3)動點R從點B出發,以每秒8個單位長度的速度沿數軸向右勻速運動,若點P,R同時出發,問點R運動多少秒時PR相距2個單位長度?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△A1B1C1,△A2B2C2的周長相等,現有兩個判斷:
①若A1B1=A2B2,A1C1=A2C2,則△A1B1C1≌△A2B2C2;
②若∠A1=∠A2,∠B1=∠B2,則△A1B1C1≌△A2B2C2,
對于上述的兩個判斷,下列說法正確的是( )
A. ①正確,②錯誤 B. ①錯誤,②正確 C. ①,②都錯誤 D. ①,②都正確
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,從一張腰長為60cm,頂角為120°的等腰三角形鐵皮OAB中剪出一個最大的扇形OCD,用此剪下的扇形鐵皮圍成一個圓錐的側面(不計損耗),則該圓錐的高為( 。
A.10cm
B.15cm
C.10 cm
D.20 cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,已知△ABC中,D為BC上一點,E為△ABC外部一點,DE交AC于一點O,AC=AE,AD=AB,∠BAC=∠DAE.
(1)求證:△ABC≌△ADE;
(2)若∠BAD=20°,求∠CDE的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是某運算程序,該程序是循環迭代的一種.根據該程序的指令,如果輸入的值是10,那么得到第1次輸出的值是5;把第1次輸出的值再次輸入,那么第2次輸出的值是6;把第2次輸出的值再次輸入,那么第3次輸出的值是3;…,第2018次輸出的值是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A從原點出發沿數軸向左運動,同時,點B也從原點出發沿數軸向右運動.已知點A的速度是1單位長度/秒,點B的速度是點A的速度的4倍(速度單位:單位長度/秒).
(1)求請在數軸上標出A、B兩點從原點出發運動3秒時的位置;
(2)若A、B兩點在(1)中的位置,數軸上是否存在一點P到點A,點B的距離之和為16,并求出此時點P表示的數;若不存在,請說明理由.
(3)若A、B兩點從(1)中的位置開始,仍以原來的速度同時沿數軸向左運動時,另一點C同時從B點位置出發向A點運動,當遇到A點后,立即返回向B點運動,遇到B點后又立即返回向A點運動,如此往返,直到B點追上A點時,C點立即停止運動.若點C一直以10單位長度/秒的速度勻速運動,那么點C從開始運動到停止運動,行駛的路程是多少個單位長度?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某開發商進行商鋪促銷,廣告上寫著如下條款:
購買商鋪后,都由開發商代為租賃10年,10年期滿后再由開發商以比原商鋪標價高20%的價格進行回購,投資者可在以下兩種購鋪方案中做出選擇:
方案一:投資者按商鋪標價一次性付清鋪款,每年可以獲得的租金為商鋪標價的5%.
方案二:投資者按商鋪標價的八五折一次性付清鋪款,4年后每年可以獲得的租金為商鋪標價的5%,但要繳納租金的10%作為管理費用.
(1)請問:投資者選擇哪種購鋪方案,10年后所獲得的投資收益率更高?為什么?(注:投資收益率=×100%)
(2)(列方程求解)某投資者按方案一購買商鋪,因資金周轉,決定向銀行貸鋪款的20%并于一年后付清貸款,已知貸款年利率為5%.那么10年后該投資者獲得55.2萬元的收益,問鋪款是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等腰直角三角形ABC中,∠C=90 o,AC=BC=4,點D是AB的中點,E.F在射線AC與射線CB上運動,且滿足AE=CF;當點E運動到與點C的距離為1時,則△DEF的面積為___________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com