【題目】如圖,某旅游景區為方便游客,修建了一條東西走向的木棧道 AB ,棧道 AB 與景區道路CD 平行.在 C 處測得棧道一端 A 位于北偏西 42°方向,在 D 處測得棧道另一端 B 位于北偏西 32°方向.已知 CD =120 m , BD =80 m ,求木棧道 AB 的長度(結果保留整數) .
(參考數據:,
,
,
,
,
)
【答案】
【解析】
過C作CE⊥AB于E,DF⊥AB交AB的延長線于F,于是得到CE∥DF,推出四邊形CDFE是矩形,得到EF=CD=120,DF=CE,解直角三角形即可得到結論.
過C作CE⊥AB于E,DF⊥AB交AB的延長線于F,
則CE∥DF,
∵AB∥CD,
∴四邊形CDFE是矩形,
∴EF=CD=120,DF=CE,
在Rt△BDF中,∵∠BDF=32°,BD=80,
∴DF=cos32°BD=80×≈68,BF=sin32°BD=80×
,
∴BE=EF-BF=,
在Rt△ACE中,∵∠ACE=42°,CE=DF=68,
∴AE=CEtan42°=68×,
∴AB=AE+BE=+
≈139m,
答:木棧道AB的長度約為139m.
科目:初中數學 來源: 題型:
【題目】如圖,已知A(1,5),直線l1:y=x,直線l2過原點且與x軸正半軸成60°夾角,在l1上有一動點M,在l2上有一動點N,連接AM、MN,則AM+MN的最小值為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2017四川省內江市)如圖,已知直線l1∥l2,l1、l2之間的距離為8,點P到直線l1的距離為6,點Q到直線l2的距離為4,PQ=,在直線l1上有一動點A,直線l2上有一動點B,滿足AB⊥l2,且PA+AB+BQ最小,此時PA+BQ=______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△ABC是等邊三角形,四邊形ADEF是菱形,∠ADE=120°(AD>AB).
(1)如圖①,當AD與邊BC相交,點D與點F在直線AC的兩側時,BD與CF的數量關系為___________.
(2)將圖①中的菱形ADEF繞點A在平面內逆時針旋轉α(0°<α<180°).
Ⅰ.判斷(1)中的結論是否仍然成立,請利用圖②證明你的結論.
Ⅱ.若AC=4,AD=6,當△ACE為直角三角形時,直接寫出CE的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店購進一批成本為每件 30 元的商品,經調查發現,該商品每天的銷售量 y(件)與銷售單價 x(元)之間滿足一次函數關系,其圖象如圖所示.
(1)求該商品每天的銷售量 y 與銷售單價 x 之間的函數關系式;
(2)若商店按單價不低于成本價,且不高于 50 元銷售,則銷售單價定為多少,才能使銷售該商品每天獲得的利潤 w(元)最大?最大利潤是多少?
(3)若商店要使銷售該商品每天獲得的利潤不低于 800 元,則每天的銷售量最少應為多少件?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在如圖所示的正方形網格中,每個小正方形的邊長為1,格點三角形(頂點是網格線的交點的三角形)ABC的頂點A、C的坐標分別為(﹣4,5),(﹣1,3).
(1)請在如圖所示的網格平面內作出平面直角坐標系;
(2)請作出△ABC關于y軸對稱的△A′B′C′;
(3)點B′的坐標為 .
(4)△ABC的面積為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法正確的是( )
A. 了解“孝感市初中生每天課外閱讀書籍時間的情況”最適合的調查方式是全面調查
B. 甲乙兩人跳繩各10次,其成績的平均數相等,,則甲的成績比乙穩定
C. 三張分別畫有菱形,等邊三角形,圓的卡片,從中隨機抽取一張,恰好抽到中心對稱圖形卡片的概率是
D. “任意畫一個三角形,其內角和是”這一事件是不可能事件
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線
軸,且直線l與拋物線
和y軸分別交于點A,B,C,點D為拋物線的頂點.若點E的坐標為
,點A的橫坐標為1.
(1)線段AB的長度等于________;
(2)點P為線段AB上方拋物線上的一點,過點P作AB的垂線交AB于點H,點F為y軸上一點,當的面積最大時,求
的最小值;
(3)在(2)的條件下,刪除拋物線在直線PH左側部分圖象并將右側部分圖象沿直線PH翻折,與拋物線在直線PH右側部分圖象組成新的函數M的圖象.現有平行于FH的直線
,若直線
與函數M的圖象有且只有2個交點,求t的取值范圍(請直接寫出t的取值范圍,無需解答過程).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】重慶某大型車輛企業從去年開始出售“大鼻子安全校車”(以下簡稱校車).經統計發現,該校車月銷售量P(輛)與月份x(1≤x≤12且x取整數)之間的函數關系如下表所示:
月份x | 1 | 2 | 3 | 4 | 5 | … |
月銷售量P(輛) | 66 | 68 | 70 | 72 | 74 | … |
(1)請觀察題中的表格,用所學過的一次函數、反比例函數或二次函數的有關知識,求出P與x之間的函數關系式;
(2)若該校車在去年上半年的銷售價格y1(萬元)與月份x之間的函數關系式為y1=﹣0.5x+36(1≤x≤6且x取整數);去年下半年的銷售價格y2(萬元)與月份x之間的函數關系式為y2=﹣x+39(7≤x≤12且x取整數).此外,已知生產每輛校車的材料成本為12萬元,人力和其他成本共4萬元.問該企業去年哪個月銷售校車的利潤最大,并求出這個最大利潤.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com