【題目】在橫線上完成下面的證明,并在括號內注明理由.
已知:如圖,∠ABC+∠BGD=180°,∠1=∠2.
求證:EF∥DB.
證明:∵∠ABC+∠BGD=180°,(已知)
∴ .( )
∴∠1=∠3.( )
又∵∠1=∠2,(已知)
∴ .( )
∴EF∥DB.( )
科目:初中數學 來源: 題型:
【題目】如圖,△ABC在直角坐標系中,
(1)請寫出△ABC各點的坐標.
(2)若把△ABC向上平移2個單位,再向左平移1個單位得到△A′B′C′,寫出 A′、B′、C′的坐標,并在圖中畫出平移后圖形.
(3)求出三角形ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為響應“學雷鋒、樹新風、做文明中學生”號召,某校開展了志愿者服務活動,活動項目有“戒毒宣傳”、“文明交通崗”、“關愛老人”、“義務植樹”、“社區服務”等五項,活動期間,隨機抽取了部分學生對志愿者服務情況進行調查,結果發現,被調查的每名學生都參與了活動,最少的參與了1項,最多的參與了5項,根據調查結果繪制了如圖所示不完整的折線統計圖和扇形統計圖.
(1)被隨機抽取的學生共有多少名?
(2)在扇形統計圖中,求活動數為3項的學生所對應的扇形圓心角的度數,并補全折線統計圖;
(3)該校共有學生2000人,估計其中參與了4項或5項活動的學生共有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠B=60°,D、E分別為AB、BC上的點,且AE、CD交于點F.
(1)如圖1,若AE、CD為△ABC的角平分線:
①求∠AFD的度數;
②若AD=3,CE=2,求AC的長;
(2)如圖2,若∠EAC=∠DCA=30°,求證:AD=CE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,中
,其中
;
(1)求線段的長(用
和
的代數式表示);
(2)如圖1,若,點
在
上,點
在
上,點
到
和BC的距離相等,
,連接
,求
的長;
(3)如圖2,若為
的中點,
,點
分別在線段
上,且
,連接
,
和
,求EF的值;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中 過點A作AE⊥DC,垂足為E,連接BE,F為BE上一點,且∠AFE=∠D.
(1)求證:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD= ,求AF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】課外興趣小組活動時,老師提出了如下問題:
(1)如圖1,中,若
,
,求
邊上的中線
的取值范圍.小明在組內經過合作交流,得到了如下的解決方法:將
繞點
逆時針旋轉
得到
,把
、
、
集中在
中,利用三角形的三邊關系可得
,則
;
(2)問題解決:受到(1)的啟發,請你證明下面命題:如圖2,在中,
是
邊上的中點,
,
交
于點
,
交
于點
,連接
.
①求證:;
②如圖3,若,探索線段
、
、
之間的等量關系,并加以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】類比思想就是根據已經學習過的知識,類比探究新知識的思想方法.我們在探究矩形、菱形、正方形等問題中的數量關系時,經常用到類比思想.某數學興趣小組在數學課外活動中,研究三角形和正方形的性質時,做了如下探究:在中,
點
為直線
上一動點(點
不與
重合),以
為邊在
右側作正方形
連接
.
(1)(觀察猜想)如圖①,當點在線段
上時;
①與
的位置關系為: ;
②之間的數量關系為: ;(將結論直接寫在橫線上)
(2)(數學思考)如圖②,當點在線段
的延長線上時,結論①②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結論再給予證明;
(3)(拓展延伸)如圖③,當點在線段
的延長線上時,延長
交
于點
,連接
.若已知
請直接寫出
的長.(提示: .過
作
于
過
作
于
于
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com