【題目】某學校教學樓(甲樓)的頂部E和大門A之間掛了一些彩旗.小穎測得大門A距甲樓的距離AB是31cm,在A處測得甲樓頂部E處的仰角是31°.
(1)求甲樓的高度及彩旗的長度;(精確到0.01m)
(2)若小穎在甲樓樓底C處測得學校后面醫院樓(乙樓)樓頂G處的仰角為40°,爬到甲樓樓頂F處測得乙樓樓頂G處的仰角為19°,求乙樓的高度及甲乙兩樓之間的距離.(精確到0.01m)
(cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)
【答案】(1)甲樓的高度為18.60m,彩旗的長度為36.05m;(2)乙樓的高度為31.25m,甲乙兩樓之間的距離為37.20m.
【解析】試題分析:(1)在直角三角形ABE中,利用銳角三角函數定義求出AE與BE的長即可;
(2)過點F作FM⊥GD,交GD于M,在直角三角形GMF中,利用銳角三角函數定義表示出GM與GD,設甲乙兩樓之間的距離為xm,根據題意列出方程,求出方程的解即可得到結果.
試題解析:解:(1)在Rt△ABE中,BE=ABtan31°=31tan31°≈18.60,AE= =
≈36.05,則甲樓的高度為18.60m,彩旗的長度為36.05m;
(2)過點F作FM⊥GD,交GD于M,在Rt△GMF中,GM=FMtan19°,在Rt△GDC中,DG=CDtan40°,設甲乙兩樓之間的距離為xm,FM=CD=x,根據題意得:xtan40°﹣xtan19°=18.60,解得:x=37.20,則乙樓的高度為31.25m,甲乙兩樓之間的距離為37.20m.
科目:初中數學 來源: 題型:
【題目】如圖,點P從出發,沿所示方向運動,每當碰到長方形OABC的邊時會進行反彈,反彈時反射角等于入射角,當點P第2018次碰到長方形的邊時,點P的坐標為______.
【答案】
【解析】
根據反射角與入射角的定義作出圖形;由圖可知,每6次反彈為一個循環組依次循環,用2018除以6,根據商和余數的情況確定所對應的點的坐標即可.
解:如圖所示:經過6次反彈后動點回到出發點,
,
當點P第2018次碰到矩形的邊時為第337個循環組的第2次反彈,
點P的坐標為
.
故答案為:.
【點睛】
此題主要考查了點的坐標的規律,作出圖形,觀察出每6次反彈為一個循環組依次循環是解題的關鍵.
【題型】填空題
【結束】
15
【題目】為了保護環境,某公交公司決定購買A、B兩種型號的全新混合動力公交車共10輛,其中A種型號每輛價格為a萬元,每年節省油量為萬升;B種型號每輛價格為b萬元,每年節省油量為
萬升:經調查,購買一輛A型車比購買一輛B型車多20萬元,購買2輛A型車比購買3輛B型車少60萬元.
請求出a和b;
若購買這批混合動力公交車每年能節省
萬升汽油,求購買這批混合動力公交車需要多少萬元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料,然后解決問題:
截長法與補短法在證明線段的和、差、倍、分等問題中有著廣泛的應用.具體的做法是在某條線段上截取一條線段等于某特定線段,或將某條線段延長,使之與某特定線段相等,再利用全等三角形的性質等有關知識來解決數學問題.
如圖1,在△ABC中,若AB=12,AC=8,求BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE,把AB、AC、2AD集中在△ABE中.利用三角形三邊的關系即可得4<AE<20 ,則2<AD<10.
(1)問題解決:受到上題解法的啟發,如圖2,在正方形ABCD中,已知:∠EAF=45°,角的兩邊AE、AF分別與BC、CD相交于點E、F,若BE=2,DF=3,求EF的長.可延長 CD到E′,使得DE′=BE,連接AE′,先證△ABE≌△ADE′,進一步證明 △AEF≌△AE′F , 即可得EF=E′F, 那么EF=_________.
(2)問題拓展:
如圖3,在⊙O中,AB、AD是⊙O的弦,且AB=AD,M、N是⊙O上的兩點,∠MAN=∠BAD.
①如圖4,連接MN、MD,求證:MH=BM+DH,DM⊥AN;
②若點C在(點C不與點A、D、N重合)上,連接CB、CD分別交AM、AN或其延長線于點E、F,直接寫出EF、BE、DF之間的等式關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】Rt△ABO與Rt△CBD在平面直角坐標系中的位置如圖所示,∠ABO=∠CBD=90°,若點A(2,﹣2),∠CBA=60°,BO=BD,則點C的坐標是( 。
A. (2,2)B. (1,
)C. (
,1)D. (2
,2)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】張老師打算在小明和小白兩位同學之間選一位同學參加數學競賽,他收集了小明、小白近期10次數學考試成績,并繪制了折線統計圖(如圖所示)
項目 | 眾數 | 中位數 | 平均數 | 方差 | 最高分 |
小明 | 85 | 85 | |||
小白 | 70,100 | 85 | 100 |
(1)根據折線統計圖,張老師繪制了不完整的統計表,請你補充完整統計表;
(2)你認為張老師會選擇哪位同學參加比賽?并說明你的理由
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明調查了班級里20位同學本學期購買課外書的花費情況,并將結果繪制成了如圖的統計圖.在這20位同學中,本學期購買課外書的花費的眾數和中位數分別是( 。
A. 50,50 B. 50,30 C. 80,50 D. 30,50
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校隨機抽取部分學生,就“學習習慣”進行調查,將“對自己做錯題進行整理、分析、改正”(選項為:很少、有時、常常、總是)的調查數據進行了整理,繪制成部分統計圖如下:
請根據圖中信息,解答下列問題:
(1)該調查的樣本容量為________, =________%,
=________%,“常!睂刃蔚膱A心角的度數為__________;
(2)請你補全條形統計圖;
(3)若該校有3200名學生,請你估計其中“總是”對錯題進行整理、分析、改正的
學生有多少名?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】把2016個正整數1、2、3、4、……、2016按如圖方式排列成一個表,用一方框按如圖所示的方式任意框住9個數.(方框只能平移)
(1)若框住的9個數中,正中間的一個數為39,則:這九個數的和為__________.
(2)方框能否框住這樣的9個數,它們的和等于2016?若能,請寫出這9個數;若不能,請說明理由。
(3)若任意框住9個數的和記為S,則:S的最大值與最小值之差等于__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,兩個含有30°角的完全相同的三角板ABC和DEF沿直線l滑動,下列說法錯誤的是( )
A. 四邊形ACDF是平行四邊形 B. 當點E為BC中點時,四邊形ACDF是矩形
C. 當點B與點E重合時,四邊形ACDF是菱形 D. 四邊形ACDF不可能是正方形
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com