(本題滿分11分)如圖,在梯形ABCD中,AD∥BC,BC=2AD,點F、G分別是邊BC、CD的中點,連接AF、FG,過點D作DE∥FG交AF于點E。
(1)求證:△AED≌△CGF;
(2)若梯形ABCD為直角梯形,∠B=90°,判斷四邊形DEFG是什么特殊四邊形?并證明你的結論;
(3)若梯形ABCD的面積為a(平方單位),則四邊形DEFG的面積為 (平方單位)。(只寫結果,不必說理)
(1)證明:∵BC=2AD,點F為BC的中點,∴CF=AD。
又∵AD∥BC,∴四邊形AFCD是平行四邊形, ........2分
∴∠DAE=∠C,AF∥DC,∴∠AFG=∠CGF!逥E∥GF,
∴∠AED=∠AFG,∴∠AED=∠CGF∴△AED≌△CGF。 ………………………4分
(2)結論:四邊形DEFG是菱形。證明如下:連接DF。
由(1)得AF∥DC,又∵DE∥GF,∴四邊形DEFG是平行四邊形。 .....6分
∵AD∥BC,AD=BF=BC∴四邊形ABFD是平行四邊形,又∵∠B=90°,
∴四邊形ABFD是矩形,∴∠DFC=90°。∵點G是CD的中點,
∴FG=DG=CD,∴四邊形DEFG是菱形。
........................8分
(3) ɑ
............... ..........................11分
【解析】略
科目:初中數學 來源: 題型:
(本題滿分11分)如圖,在梯形ABCD中,AD∥BC,BC=2AD,點F、G分別是邊BC、CD的中點,連接AF、FG,過點D作DE∥FG交AF于點E。
(1)求證:△AED≌△CGF;
(2)若梯形ABCD為直角梯形,∠B=90°,判斷四邊形DEFG是什么特殊四邊形?并證明你的結論;
(3)若梯形ABCD的面積為a(平方單位),則四邊形DEFG的面積為 (平方單位)。(只寫結果,不必說理)
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源:2011-2012學年廣西省貴港市九年級第一次教學質量監測數學卷 題型:解答題
(本題滿分11分)
如圖所示,⊙的直徑
,
和
是它的兩條切線,
為射線
上的動點(不與
重合),
切⊙
于
,交
于
,設
.
(1)求與
的函數關系式;
(2)若⊙與⊙
外切,且⊙
分別與
相切于點,求
為何值時⊙
半徑為1.
查看答案和解析>>
科目:初中數學 來源:2011-2012年江蘇省九年級上學期期中考試數學卷 題型:解答題
(本題滿分11分)如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21。動點P從點D出發,沿射線DA的方向以每秒2兩個單位長的速度運動,動點Q從點C出發,在線段CB上以每秒1個單位長的速度向點B運動,點P,Q分別從點D,C同時出發,當點Q運動到點B時,點P隨之停止運動。設運動的時間為t(秒).
1.(1)設△BPQ的面積為S,求S與t之間的函數關系式
2.(2)當線段PQ與線段AB相交于點O,且2AO=OB時,求t的值.
3.(3)當t為何值時,以B,P,Q三點為頂點的三角形是等腰三角形?
4.(4)是否存在時刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源:2010-2011年山東省德州九年級第一學期期末質量檢測數學卷 題型:解答題
.(本題滿分11分)
如圖,在正方形ABCD內,已知兩個動圓⊙O1與⊙Q2互相外切.且⊙O1與邊AB,AD相切,⊙O2與邊BC,CD相切,若正方形的邊長為1,⊙O1與⊙Q2的半徑分別為,
.
1.(1)求和
的關系式;
2.(2)求⊙O1與⊙Q2的面積之和的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com