試題分析:(1)①如圖1,有△CEF與△ABC相似,可得∠CEF=∠A=45°,由題意知△CEF≌△DEF,所以CE=DE,∠DEF=∠CEF=45°,所以∠DEC=90°,即∠AED=90°,又∠A=45°,所以△AED是等腰直角三角形,所以AE=DE,所以AE=CE=1,根據勾股定理可求得AD=

.②分兩種情況:一、當△CEF∽△CAB時,如圖2,則有∠CEF=∠CAB,所以EF∥AB,根據題意,點C與點D關于直線EF對稱,所以CD⊥EF,所以CD⊥AB,由三角形的面積公式可求得CD=2.4,在△ACD中,由勾股定理可得AD=

;二、當△CFE∽△CAB時,如圖3,此時有∠A=∠CFE, ∠B=∠CEF,又∠A+∠B=90°,所以∠A+∠CEF="90°," ∠B+∠CFE=90°,前面已證EF⊥CD,所以∠DCE+∠CEF=90°,∠DCF+∠CFE=90°,所以∠A=∠ACD, ∠B=∠BCD,所以AD=CD=BD=2.5;(2)利用折疊前后對應的部分關于折疊線對稱,以及直角三角形斜邊上的中線等于斜邊的一半,即可求得∠A=∠CFE, ∠B=∠CEF,所以得證.


試題解析:(1)①

;②

;
(2)△CEF與△ABC相似.理由如下:
如圖,連接CD,與EF交于點Q.
∵CD是Rt△ABC的中線,
∴CD=DB=

AB,∴∠DCB=∠B.
由折疊性質可知,∠CQF=∠DQF=90°,
∴∠DCB+∠CFE=90°,
∵∠B+∠A=90°,
∴∠CFE=∠A,
又∵∠ECF=∠BCA,
∴△CEF∽△CBA.
