【題目】若從 -3,-1,0,1,3這五個數中隨機抽取一個數記為a,再從剩下的四個數中任意抽取一個數記為b,恰好使關于x,y的二元一次方程組有整數解,且點(a,b)落在雙曲線
上的概率是_________.
【答案】
【解析】分析:根據題意可以寫出所有的可能性,然后將所有的可能性代入方程組和雙曲線
,找出符號要求的可能性,從而可以解答本題.
詳解:從﹣3,﹣1,0,1,3這五個數中隨機抽取一個數記為a,再從剩下的四個數中任意抽取一個數記為b,則(a,b)的所有可能性是:
(﹣3,﹣1)、(﹣3,0)、(﹣3,1)、(﹣3,3)、
(﹣1,﹣3)、(﹣1,0)、(﹣1,1)、(﹣1,3)、
(0,﹣3)、(0,﹣1)、(0,1)、(0,3)、
(1,﹣3)、(1,﹣1)、(1,0)、(1,3)、
(3,﹣3)、(3,﹣1)、(3,0)、(3,1),將上面所有的可能性分別代入關于x,y的二元一次方程組有整數解,且點(a,b)落在雙曲線
上的是:(﹣3,1),(﹣1,3),(3,﹣1),故恰好使關于x,y的二元一次方程組
有整數解,且點(a,b)落在雙曲線
上的概率是:
.故答案為:
.
科目:初中數學 來源: 題型:
【題目】如圖1,在ABC中,∠A=80°,BD、CE分別平分∠ABC、∠ACB,BD與CE交于點F.
(1)求∠BFC的度數;
(2)如圖2,EG、DG分別平分∠AEF、∠ADF, EG與DG交于點G ,求∠EGD的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AC為直徑作交BC于點D,過點D作FE⊥AB于點E,交AC的延長線于點F.
(1)求證: EF與相切;
(2)若AE=6,,求EB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】用一條直線 m 將如圖 1 的直角鐵皮分成面積相等的兩部分.圖 2、圖 3 分別是甲、乙兩同學給出的作法,對于兩人的作法判斷正確的是( )
A. 甲正確,乙不正確B. 甲不正確,乙正確
C. 甲、乙都正確D. 甲、乙都不正確
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖A在數軸上所對應的數為﹣2.
(1)點B在點A右邊距A點4個單位長度,求點B所對應的數;
(2)在(1)的條件下,點A以每秒2個單位長度沿數軸向左運動,點B以每秒2個單位長度沿數軸向右運動,當點A運動到﹣6所在的點處時,求A,B兩點間距離.
(3)在(2)的條件下,現A點靜止不動,B點沿數軸向左運動時,經過多長時間A,B兩點相距4個單位長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在括號內注明說理依據.如圖已知∠B=∠D,∠1=∠2,試猜想∠A與∠C的大小關系,并說明理由.
解:猜想∠A=∠C
∵∠1=∠2 (已知)
∠1=∠EGC
∴∠2=∠EGC
∴BF∥DE
∴∠B=∠AED
∵∠B=∠D
∴∠AED=∠D (等量代換)
∴AB∥CD
∴∠A=∠C .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知A,B分別為數軸上的兩點,點A表示的數是﹣30,點B表示的數是50.
(1)請寫出線段AB中點M表示的數是 .
(2)現有一只螞蟻P從點B出發,以每秒3個單位長度的速度沿數軸向左移動,同時另一只螞蟻Q恰好從點A出發,以每秒2個單位長度的速度沿數軸向右移動,設兩只螞蟻在數軸上的點C相遇.
①求A、B兩點間的距離;
②求兩只螞蟻在數軸上的點C相遇時所用的時間;
③求點C對應的數是多少?
(3)若螞蟻P從點B出發,以每秒3個單位長度的速度沿數軸向左運動,同時另一只螞蟻恰好從A點出發,以每秒2個單位長度的速度沿數軸也向左運動,設兩只螞蟻在數軸上的D點相遇,求D點表示的數是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,D、E為⊙O上位于AB異側的兩點,連接BD并延長至點C,使得CD=BD,連接AC交⊙O于點F,連接AE、DE、DF.
(1)證明:∠E=∠C;
(2)若∠E=55°,求∠BDF的度數;
(3)設DE交AB于點G,若DF=4,cosB=,E是弧AB的中點,求EGED的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com