【題目】把多塊大小不同的30°直角三角板如圖所示,擺放在平面直角坐標系中,第一塊三角板AOB的一條直角邊與y軸重合且點A的坐標為(0,1),∠ABO=30°;第二塊三角板的斜邊BB1與第一塊三角板的斜邊AB垂直且交y軸于點B1;第三塊三角板的斜邊B1B2與第二塊三角板的斜邊BB1垂直且交x軸于點B2;第四塊三角板的斜邊B2B3與第三塊三角板的斜邊B1B2C垂直且交y軸于點B3;…按此規律繼續下去,則點B2017的坐標為 .
科目:初中數學 來源: 題型:
【題目】某商場購進一批日用品,若按每件5元的價格銷售,每月能賣出3萬件;若按每件6元的價格銷售,每月能賣出2萬件,假定每月銷售件數 (件)與價格
(元/件)之間滿足一次函數關系.
(1)試求:y與x之間的函數關系式;
(2)這批日用品購進時進價為4元,則當銷售價格定為多少時,才能使每月的潤最大?每月的最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】探索:小明和小亮在研究一個數學問題:已知AB∥CD,AB和CD都不經過點P,探索∠P與∠A,∠C的數量關系.
發現:在圖1中,小明和小亮都發現:∠APC=∠A+∠C;
小明是這樣證明的:過點P作PQ∥AB
∴∠APQ=∠A( )
∵PQ∥AB,AB∥CD.
∴PQ∥CD( )
∴∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
小亮是這樣證明的:過點作PQ∥AB∥CD.
∴∠APQ=∠A,∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
請在上面證明過程的過程的橫線上,填寫依據;兩人的證明過程中,完全正確的是 .
應用:
在圖2中,若∠A=120°,∠C=140°,則∠P的度數為 ;
在圖3中,若∠A=30°,∠C=70°,則∠P的度數為 ;
拓展:
在圖4中,探索∠P與∠A,∠C的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合與探究: 如圖,直線的表達式為
,與
軸交于點
,直線
交
軸于點
,
,
與
交于點
,過點
作
軸于點
,
.
(1)求點的坐標;
(2)求直線的表達式;
(3)求的值;
(4)在軸上是否存在點
,使得
?若存在,請直接寫出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,點F、E分別在邊AC、AB上,連接DE、DF,且∠AFD+∠B=180°.
(1)求證:BD=FD;
(2)當AF+FD=AE時,求證:∠AFD=2∠AED.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2015攀枝花)某超市銷售有甲、乙兩種商品,甲商品每件進價10元,售價15元;乙商品每件進價30元,售價40元.
(1)若該超市一次性購進兩種商品共80件,且恰好用去1600元,問購進甲、乙兩種商品各多少件?
(2)若該超市要使兩種商品共80件的購進費用不超過1640元,且總利潤(利潤=售價﹣進價)不少于600元.請你幫助該超市設計相應的進貨方案,并指出使該超市利潤最大的方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,點P是AB邊上一點(不與A,B重合),過點P作PQ⊥CP,交AD邊于點Q,且
,連結
.
(1)求證:四邊形是矩形;
(2)若CP=CD,AP=2,AD=6時,求的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著信息技術的迅猛發展,人們去商場購物的支付方式更加多樣、便捷.某校數學興趣小組設計了一份調查問卷,要求每人選且只選一種你最喜歡的支付方式.現將調查結果進行統計并繪制如圖所示的兩幅不完整的統計圖.
請結合圖中所給出的信息解答下列問題:
(1)本次抽樣調查的樣本容量是 ;
(2)補全條形統計圖;
(3)若某商場天內有人次支付記錄,估計選擇微信支付的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,∠XOY=90°,點A、B分別在射線OX、OY上移動,BE是∠ABY的平分線,BE的反向延長線與∠OAB的平分線相交于點C,試問∠ACB的大小是否發生變化?如果保持不變,請給出證明;如果隨點A、B移動發生變化,請求出變化范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com