精英家教網 > 初中數學 > 題目詳情

【題目】在平面直角坐標系xOy中,拋物線,與x軸交于點CC在點D的左側,與y軸交于點A

求拋物線頂點M的坐標;

若點A的坐標為,軸,交拋物線于點B,求點B的坐標;

的條件下,將拋物線在B,C兩點之間的部分沿y軸翻折,翻折后的圖象記為G,若直線與圖象G有一個交點,結合函數的圖象,求m的取值范圍.

【答案】(1)M的坐標為;(2B4,3);(3

【解析】

利用配方法將已知函數解析式轉化為頂點式方程,可以直接得到答案

根據拋物線的對稱性質解答;

利用待定系數法求得拋物線的表達式為根據題意作出圖象G,結合圖象求得m的取值范圍.

解:(1 ,

該拋物線的頂點M的坐標為

知,該拋物線的頂點M的坐標為;

該拋物線的對稱軸直線是

A的坐標為,軸,交拋物線于點B,

A與點B關于直線對稱,

;

拋物線y軸交于點,

拋物線的表達式為

拋物線G的解析式為:

,得:

拋物線x軸的交點C的坐標為

C關于y軸的對稱點的坐標為

代入,得:

代入,得:

所求m的取值范圍是

故答案為:(1M的坐標為;(2B4,3);(3

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD內接于⊙O,AB是⊙O的直徑,ACBD相交于點E,且DC2CECA

1)求證:BCCD;

2)分別延長AB,DC交于點P,若PBOB,CD2,求⊙O的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一次函數y1=ax+b(a≠0)的圖象與反比例函數y2=(k為常數,k≠0)的圖象交于A、B兩點,過點AACx軸,垂足為C,連接OA,已知OC=2,tanAOC=,B(m,﹣2)

(1)求一次函數和反比例函數的解析式.

(2)結合圖象直接寫出:當y1>y2時,x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,O的弦ADBC,過點D的切線交BC的延長線于點E,ACDEBD于點H,DO及延長線分別交ACBC于點G、F

(1)求證:DF垂直平分AC;

(2)求證:FCCE;

(3)若弦AD5cmAC8cm,求O的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下面材料:

在數學課上,老師提出利用尺規作圖完成下面問題:

已知:求作:的內切圓.

小明的作法如下:如圖2,

的平分線BECF,兩線相交于點O;

過點O,垂足為點D;

O為圓心,OD長為半徑作所以,即為所求作的圓.

請回答:該尺規作圖的依據是______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,將ABC繞頂點C逆時針旋轉得到A'B'C,MBC的中點,NA'B'的中點,連接MN,若BC4,∠ABC60°,則線段MN的最大值為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知ΔABC內接于⊙O,AB為⊙O的直徑,BD⊥AB,交AC的延長線于點D.

(1)若EBD的中點,連結CE,試判斷CE與⊙O的位置關系.

(2)若AC=3CD,求∠A的大。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,BD是△ABC的角平分線,它的垂直平分線分別交AB,BD,BC于點E,F,G,連接ED,DG.

(1)請判斷四邊形EBGD的形狀,并說明理由;

(2)若∠ABC=30°,∠C=45°,ED=2,點H是BD上的一個動點,求HG+HC的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知矩形ABCD,AD=4,CD=10,PAB上一動點,M、N、E分別是PD、PC、CD的中點.

(1)求證:四邊形PMEN是平行四邊形;

(2)請直接寫出當AP為何值時,四邊形PMEN是菱形;

(3)四邊形PMEN有可能是矩形嗎?若有可能,求出AP的長;若不可能,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视