【題目】如圖, OC 是AOB 的平分線, P 是OC 上的一點, PD OA 于 D ,PE OB 于 E . F 是OC 上的另一點,連接 DF 、 EF .
(1)求證: DPF EPF ;
(2)比較 DF 與 EF 的大小關系,并說明理由.
【答案】(1)詳見解析;(2)DF=EF,理由詳見解析.
【解析】
(1)先根據角平分線的性質可以得出PD=PE,就可以得出△PDO≌△PEO,就可以得出OPD OPE,進而證明DPF EPF ;
(2)根據(1)中△PDO≌△PEO,根據全等三角形的性質得到,OD=OE,∠POD=∠POE,證明△DOF≌△EOF,就可以得出結論.
證明:(1)∵OC是∠AOB的角平分線,PD⊥OA,PE⊥OB,
∴PD=PE.
在Rt△PDO和Rt△PEO中,
∴Rt△PDO≌Rt△PEO(HL),
OPD OPE,
∴DPF EPF ;
(2)DF=EF.
理由如下:Rt△PDO≌Rt△PEO(HL),
∴OD=OE,∠POD=∠POE.
在△DOF和△EOF中,
∴△DOF≌△EOF(SAS),
∴DF=EF.
科目:初中數學 來源: 題型:
【題目】學生在素質教育基地進行社會實踐活動,幫助農民伯伯采摘了黃瓜和茄子共40kg,了解到這些蔬菜的種植成本共42元,還了解到如下信息:
(1)請問采摘的黃瓜和茄子各多少千克?
(2)這些采摘的黃瓜和茄子可賺多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市計劃購進一批甲、乙兩種玩具,已知5件甲種玩具的進價與3件乙種玩具的進價的和為231元,2件甲種玩具的進價與3件乙種玩具的進價的和為141元.
(1)求每件甲種、乙種玩具的進價分別是多少元;
(2)近期批發商有優惠活動,如圖所示,如果超市決定在甲、乙兩種玩具中選購其中一種,且數量超過20件,請你幫助超市判斷購進哪種玩具更省錢.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(探索新知)
如圖1,點C在線段AB上,圖中共有3條線段:AB、AC和BC,若其中有一條線段的長度是另一條線段長度的兩倍,則稱點C是線段AB的“二倍點”.
(1)一條線段的中點 這條線段的“二倍點”;(填“是”或“不是”)
(深入研究)
如圖2,若線段AB=20cm,點M從點B的位置開始,以每秒2cm的速度向點A運動,當點M到達點A時停止運動,運動的時間為t秒.
(2)問t為何值時,點M是線段AB的“二倍點”;
(3)同時點N從點A的位置開始,以每秒1cm的速度向點B運動,并與點M同時停止.請直接寫出點M是線段AN的“二倍點”時t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算:
(1)a3(-b3)2+(-2ab2)3;
(2)(a-b)10÷(b-a)3÷(b-a)3;
(3)-22+(-)-2-(π-5)0-|-4|;
(4)(x+y-3)(x-y+3);
(5)3x2y(2x-3y)-(2xy+3y2)(3x2-3y);
(6)(x-2y)(x+2y)-(x-2y)2.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖, AC BC , BD AD ,垂足分別為C 、D , AC BD , AC 、BD 交于O
(1)求證: CAB DBA ;
(2)求證: SADO SBCO .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】湖州素有魚米之鄉之稱,某水產養殖大戶為了更好地發揮技術優勢,一次性收購了
淡水魚,計劃養殖一段時間后再出售.已知每天放養的費用相同,放養
天的總成本為
萬元;放養
天的總成本為
萬元(總成本=放養總費用+收購成本).
(1)設每天的放養費用是 萬元,收購成本為
萬元,求
和
的值;
(2)設這批淡水魚放養 天后的質量為
(
),銷售單價為
元/
.根據以往經驗可知:
與
的函數關系為
;
與
的函數關系如圖所示.
①分別求出當 和
時,
與
的函數關系式;
②設將這批淡水魚放養 天后一次性出售所得利潤為
元,求當
為何值時,
最大?并求出最大值.(利潤=銷售總額-總成本)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC為等邊三角形,AE=CD,AD、BE相交于點F.
(1)求證:△ABE≌△CAD;
(2)若BP⊥AD于點P,PF=9,EF=3,求AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,△ABC在平面直角坐標系中的位置如圖所示.
(1)把△ABC向下平移2個單位長度得到△A1B1C1,請畫出△A1B1C1;
(2)請畫出△A1B1C1關于y軸對稱的△A2B2C2,并寫出A2的坐標;
(3)求△ABC的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com