【題目】計算:(1)(π﹣3)0+﹣2cos45°﹣
(2)若x+=3,求
的值.
(1)(π﹣3)0+﹣2cos45°﹣
(2)若x+=3,求
的值.
【答案】
(1)
解:原式=1+3﹣2×
﹣8=2
﹣7;
(2)
解:原式=
=
=
=.
【解析】(1)根據零指數冪、二次根式的化簡、特殊角的三角函數值、負整數指數冪的定義解答;
(2)分子分母同時除以x2 , 配方后整體代入即可解答.
【考點精析】掌握零指數冪法則和整數指數冪的運算性質是解答本題的根本,需要知道零次冪和負整數指數冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數);aman=am+n(m、n是正整數);(am)n=amn(m、n是正整數);(ab)n=anbn(n是正整數);am/an=am-n(a不等于0,m、n為正整數);(a/b)n=an/bn(n為正整數).
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內接正方形,AB=4,PC、PD是⊙O的兩條切線,C、D為切點.
(1)如圖1,求⊙O的半徑;
(2)如圖1,若點E是BC的中點,連接PE,求PE的長度;
(3)如圖2,若點M是BC邊上任意一點(不含B、C),以點M為直角頂點,在BC的上方作∠AMN=90°,交直線CP于點N,求證:AM=MN.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△ABC,AB=AC,將△ABC沿BC方向平移得到△DEF.
(1)如圖1,連接BD,AF,則BD AF(填“>”、“<”或“=”);
(2)如圖2,M為AB邊上一點,過M作BC的平行線MN分別交邊AC,DE,DF于點G,H,N,連接BH,GF,求證:BH=GF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,對角線AC、BD相交于點O,點E、F是AD上的點,且AE=EF=FD.連接BE、BF,使它們分別與AO相交于點G、H.
(1)(1)求EG:BG的值;
(2)(2)求證:AG=OG;
(3)(3)設AG=a,GH=b,HO=c,求a:b:c的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,AB=BC,∠B=90°,AC=10.四邊形BDEF是△ABC的內接正方形(點D、E、F在三角形的邊上).則此正方形的面積是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC切⊙O于點B,OC平行于弦AD,過點D作DE⊥AB于點E,連結AC,與DE交于點P.求證:
(1)PE=PD
(2)ACPD=APBC
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在一面與地面垂直的圍墻的同側有一根高10米的旗桿AB和一根高度未知的電線桿CD,它們都與地面垂直,為了測得電線桿的高度,一個小組的同學進行了如下測量:某一時刻,在太陽光照射下,旗桿落在圍墻上的影子EF的長度為2米,落在地面上的影子BF的長為10米,而電線桿落在圍墻上的影子GH的長度為3米,落在地面上的影子DH的長為5米,依據這些數據,該小組的同學計算出了電線桿的高度.
(1)該小組的同學在這里利用的是 投影的有關知識進行計算的;
(2)試計算出電線桿的高度,并寫出計算的過程。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點A(﹣2,n)在拋物線y=x2+bx+c上.
(1)若b=1,c=3,求n的值;
(2)若此拋物線經過點B(4,n),且二次函數y=x2+bx+c的最小值是﹣4,請畫出點P(x﹣1,x2+bx+c)的縱坐標隨橫坐標變化的圖象,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com