【題目】如圖,圓O的半徑為1,是圓O的內接等邊三角形,點D.E在圓上,四邊形EBCD為矩形,這個矩形的面積是_____________
【答案】
【解析】
連接BD、OC,根據矩形的性質得∠BCD=90°,再根據圓周角定理得BD為⊙O的直徑,則BD=2;由ABC為等邊三角形得∠A=60°,于是利用圓周角定理得到∠BOC=2∠A=120°,易得∠CBD=30°,在Rt△BCD中,根據含30°的直角三角形三邊的關系得到CD=BD=1,BC=
CD=
,然后根據矩形的面積公式求解.
連結BD、OC,如圖,
∵四邊形BCDE為矩形,
∴∠BCD=90°,
∴BD為⊙O的直徑,
∴BD=2,
∵△ABC為等邊三角形,
∴∠A=60°,
∴∠BOC=2∠A=120°,
而OB=OC,
∴∠CBD=30°,
在Rt△BCD中,CD=BD=1,BC=
CD=
,
∴矩形BCDE的面積=BCCD=
故填:.
科目:初中數學 來源: 題型:
【題目】某校八年級學生小陽,小杰和小凡到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作,已知該水果的進價為10元/千克,下面是他們在活動結束后的對話.
小陽:如果以12元/千克的價格銷售,那么每天可售出300千克.
小杰:如果以15元/千克的價格銷售,那么每天可獲取利潤750元.
小凡:我通過調查驗證發現每天的銷售量y(千克)與銷售單價x(元)之間存在一次函數關系.
(1)求y(千克)與x(元)(x>0)的函數關系式;
(2)當銷售單價為何值時,該超市銷售這種水果每天獲得的利潤達600元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為1,正方形CEFG的面積為,點E在CD邊上,點G在BC的延長線上,設以線段AD和DE為鄰邊的矩形的面積為
,且
.
⑴求線段CE的長;
⑵若點H為BC邊的中點,連結HD,求證:.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在梯形中,
,
交邊
于點
.
(1)當點與
恰好重合時(如圖1),求
的長;
(2)問:是否可能使、
與
都相似?若能,請求出此時
的長;若不能,請說明理由(如圖2).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】音樂噴泉(圖1)可以使噴水造型隨音樂的節奏起伏變化而變化.某種音樂噴泉形狀如拋物線,設其出水口為原點,出水口離岸邊18m,音樂變化時,拋物線的頂點在直線y=kx上變動,從而產生一組不同的拋物線(圖2),這組拋物線的統一形式為y=ax2+bx.
(1)若已知k=1,且噴出的拋物線水線最大高度達3m,求此時a、b的值;
(2)若k=1,噴出的水恰好達到岸邊,則此時噴出的拋物線水線最大高度是多少米?
(3)若k=3,a=﹣,則噴出的拋物線水線能否達到岸邊?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中國高鐵迅猛發展,給我們的出行帶來極大的便捷,如圖1,是某種新設計動車車頭的縱截面一部分,曲線OBA是一開口向左,對稱軸正好是水平線OC的拋物線的一部分,點A、B是車頭玻璃罩的最高點和最低點,AC、BD是兩點到車廂底部的距離,OD=1.5米,BD=1.5米,AC=3米,請你利用所學的函數知識解決以下問題.
(1)為了方便研究問題,需要把曲線OBA繞點O旋轉轉化為我們熟悉的函數,請你在所給的方框內,畫出你旋轉后函數圖象的草圖,在圖中標出點O、A、B、C、D對應的位置,并求你所畫的函數的解析式.
(2)如圖2,駕駛員座椅安裝在水平線OC上一點P處,實驗表明:當PA+PB最小時,駕駛員駕駛時視野最佳,為了達到最佳視野,求OP的長.
(3)駕駛員頭頂到玻璃罩的高度至少為0.3米才感到壓抑,一個駕駛員坐下時頭頂到椅面的距離為1米,在(2)的情況下,座椅最多條件到多少時他才感到舒適?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com