精英家教網 > 初中數學 > 題目詳情

【題目】為了在中考體育考試中取得好成績,每位同學都認真訓練,體育成績也大幅提高,這是從我校某次模擬考試中隨機抽取了50名同學的一分鐘跳繩次數,并繪制出部分頻數分布表和部分頻數分布直方圖,如下圖所示:

請結合圖表完成下列問題:

(1)表中的a   

(2)請把頻數分布直方圖補充完整;

(3)若初三年級共有800名學生,中考體考一分鐘跳繩次數大于等于185即為滿分20分,根據以上信息,請你估算全年級學生一分鐘跳繩次數得滿分的人數.

【答案】(1)12.(2)詳見解析;(3)96(人).

【解析】

(1)根據總人數=各組人數之和,即可解決問題;

(2)3,4組人數畫出條形圖即可;

(3)用樣本估計總體的思想即可解決問題;

解:(1)a=50﹣6﹣8﹣18﹣6=12(人).

故答案為12.

(2)頻數分布直方圖如圖所示,

(3)初三年級共有800名學生,得滿分的人數=800×=96(人).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸為直線.下列結論中,正確的是(  )

A. abc>0 B. a+b=0 C. 2b+c>0 D. 4a+c<2b

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】運動員將小球沿與地面成一定角度的方向擊出,在不考慮空氣阻力的條件下,小球的飛行高度hm)與它的飛行時間ts)滿足二次函數關系,th的幾組對應值如下表所示.

ts

0

0.5

1

1.5

2

hm

0

8.75

15

18.75

20

(1)求ht之間的函數關系式(不要求寫t的取值范圍);

(2)求小球飛行3s時的高度;

(3)問:小球的飛行高度能否達到22m?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數的解析式是y=x2﹣2x﹣3.

(1)與y軸的交點坐標是   ,頂點坐標是   

(2)在坐標系中利用描點法畫出此拋物線;

x

y

(3)結合圖象回答:當﹣2<x<2時,函數值y的取值范圍是   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在△ABC中,BA=BC,∠ABC=α(0°<α<180°),點P為直線BC上一動點(不與點B,C重合),連接AP,將線段PA繞點P順時針旋轉α度得到線段PQ,連接CQ.

(1)當α=90°,且點P在線段BC上時,過P作PF∥AC交直線AB于點F,如圖1,圖中與△APF全等的是哪個三角形,∠ACQ的度數

(2)當點P在BC延長線上,AB:AC=m:n時,如圖2,試求線段BP與CQ的比值;

(3)當點P在直線BC上,α=60°,∠APB=30°,CP=4時,請直接寫出線段CQ的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線yax2+bx+4x軸交于A,B兩點(點A在點B左側),與y軸交于點C,拋物線的頂點為點D,且3OC=4OB,對稱軸為直線x,點E,連接CE交對稱軸于點F,連接AF交拋物線于點G

(1)求拋物線的解析式和直線CE的解析式;

(2)如圖,過EEPx軸交拋物線于點P,點Q是線段BC上一動點,當QG+QB最小時,線段MN在線段CE上移動,點M在點N上方,且MN,請求出四邊形PQMN周長最小時點N的橫坐標;

(3)如圖③,BC與對稱軸交于點R,連接BD,點S是線段BD上一動點,將△DRS沿直線RS折疊至△DRS,是否存在點S使得△DRS與△BRS重疊部分的圖形是直角三角形?若存在,請求出BS的長,若不存在,請說明理由.(參考數據:tan∠DBC

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】省射擊隊為從甲、乙兩名運動員中選拔一人參加全國比賽,對他們進行了六次測試,測試成績如下表(單位:環):

第一次

第二次

第三次

第四次

第五次

第六次

10

8

9

8

10

9

10

7

10

10

9

8

(1)根據表格中的數據,計算出甲的平均成績是 環,乙的平均成績是 環;

(2)分別計算甲、乙六次測試成績的方差;

(3)根據(1)、(2)計算的結果,你認為推薦誰參加全國比賽更合適,請說明理由.

計算方差的公式:s2 [(x1)2+(x2)2++(xn)2]

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】AD是等腰ABCBC邊上的高,且ADBC,請通過畫圖求出∠ABC所有可能的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ABC 中,D BC 邊的中點,E、F 分別在 AD 及其延長線上,CEBF,連接BE、CF.

(1)求證:BDF ≌△CDE;

(2)若 DE =BC,試判斷四邊形 BFCE 是怎樣的四邊形,并證明你的結論.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视