【題目】如圖,在平面直角坐標系中,直線y=-3x+3與x軸、y軸分別交于A、B兩點,以AB為邊在第一象限作正方形ABCD,點D在雙曲線y=(k≠0)上,將正方形沿x軸負方向平移a個單位長度后,點C恰好落在雙曲線上,則a的值是____.
【答案】2.
【解析】
作CE⊥y軸于點E,交雙曲線于點G.作DF⊥x軸于點F,易證△OAB≌△FDA≌△BEC,求得A、B的坐標,根據全等三角形的性質可以求得C、D的坐標,從而利用待定系數法求得反比例函數的解析式,進而求得G的坐標,則a的值即可求解.
作CE⊥y軸于點E,交雙曲線于點G.作DF⊥x軸于點F.
在y=-3x+3中,令x=0,解得:y=3,即B的坐標是(0,3).
令y=0,解得:x=1,即A的坐標是(1,0).
則OB=3,OA=1.
∵∠BAD=90°,
∴∠BAO+∠DAF=90°,
又∵直角△ABO中,∠BAO+∠OBA=90°,
∴∠DAF=∠OBA,
在△OAB和△FDA中,
,
∴△OAB≌△FDA(AAS),
同理,△OAB≌△FDA≌△BEC,
∴AF=OB=EC=3,DF=OA=BE=1,
故D的坐標是(4,1),C的坐標是(3,4).代入y=得:k=4,則函數的解析式是:y=
.
∴OE=4,
則C的縱坐標是4,把y=4代入y=得:x=1.即G的坐標是(1,4),
∴CG=2,
∴a=2.
故答案為:2.
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AD平分∠BAC,過A,C,D三點的圓與斜邊AB交于點E,連接DE.
(1)求證:AC=AE;
(2)若AC=6,CB=8,求△ACD外接圓的直徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將線段AB繞點O順時針旋轉90°得到線段A′B′,那么A(﹣2,5)的對應點A′的坐標是
A. (2,5) B. (5,2) C. (4, ) D. (
,4)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,一次函數y=﹣x+b的圖象與反比例函數y=
(k≠0)圖象交于A、B兩點,與y軸交于點C,與x軸交于點D,其中A點坐標為(﹣2,3).
(1)求一次函數和反比例函數解析式.
(2)若將點C沿y軸向下平移4個單位長度至點F,連接AF、BF,求△ABF的面積.
(3)根據圖象,直接寫出不等式﹣x+b>
的解集.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某花卉種植基地準備圍建一個面積為100平方米的矩形苗圃園種植玫瑰花,其中一邊靠墻,另外三邊用29米長的籬笆圍成.已知墻長為18米,為方便進入,在墻的對面留出1米寬的門(如圖所示),求這個苗圃園垂直于墻的一邊長為多少米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處,已知折痕與邊BC交于點O,連結AP、OP、OA.
(1)求證:△OCP∽△PDA;
(2)若△OCP與△PDA的面積比為1:4,求邊AB的長;
(3)如圖2,擦去折痕AO、線段OP,連結BP.動點M在線段AP上(點M與點P、A不重合),動點N在線段AB的延長線上,且BN=PM,連結MN交PB于點F,作ME⊥BP于點E.探究:當點M、N在移動過程中,線段EF與線段PB有何數量關系?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將半徑為4,圓心角為90°的扇形BAC繞A點逆時針旋轉60°,點B、C的對應點分別為點D、E且點D剛好在上,則陰影部分的面積為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b的圖象與反比例函數y=的圖象在第一象限交于點A(4,2),與y軸的負半軸交于點B,且OB=6.
(1)求函數y=和y=kx+b的解析式;
(2)已知直線AB與x軸相交于點C,在第一象限內,求反比例函數y=的圖象上一點P,使得S△POC=9.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=3x+3交x軸于A點,交y軸于B點,過A、B兩點的拋物線交x軸于另一點C(3,0).
(1)求拋物線的解析式;
(2)求拋物線的對稱軸和頂點坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com