如圖,在△ABC中,∠ACB=90°,AC=BC,延長AB至點D,使DB=AB,連接CD,以CD為直角邊作等腰三角形CDE,其中∠DCE=90°,連接BE.
(1)求證:△ACD≌△BCE;
(2)若AB=3cm,則BE= cm;
(3)BE與AD有何位置關系?請說明理由.
(1)根據等腰直角三角形的性質可得CD=CE,由∠ACB=90°可得∠ACB=∠DCE,即可證得∠ACD=∠BCE,再結合AC=BC,即可證得結論;(2)6;(3)垂直
【解析】
試題分析:(1)根據等腰直角三角形的性質可得CD=CE,由∠ACB=90°可得∠ACB=∠DCE,即可證得∠ACD=∠BCE,再結合AC=BC,即可證得結論;
(2)先由勾股定理求得AB=3,再由DB=AB,可得AD的長,然后根據全等三角形的性質求解即可;
(3)根據全等三角形的性質及三角形的面積公式求解即可
解:(1)∵△CDE是等腰直角三角形,∠DCE=90°,
∴CD=CE,
∵∠ACB=90°,
∴∠ACB=∠DCE,
∴∠ACB+∠BCD=∠DCE+∠BCD,
∴∠ACD=∠BCE,
∵AC=BC
∴△ACD≌△BCE;
(2)∵AC=BC=3,∠ACB=90°,由勾股定理得:AB=3,
又∵DB=AB,
∴AD=2AB=6,
∵△ACD≌△BCE;
∴BE=AD=6cm;
(3)如圖所示:
∵△ACD≌△BCE
∴∠ADC=∠BEC
∵∠1=∠2,∠DCE=90°
∴∠DBE=∠DCE=90°
∴BE⊥AD.
考點:全等三角形的判定和性質
點評:全等三角形的判定和性質是初中數學的重點,貫穿于整個初中數學的學習,是中考中比較常見的知識點,一般難度不大,需熟練掌握.
科目:初中數學 來源: 題型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com