【題目】在△ABC中,AB= ,AC=
,BC=1.
(1)求證:∠A≠30°;
(2)將△ABC繞BC所在直線旋轉一周,求所得幾何體的表面積.
【答案】
(1)證明:∵BC2+AC2=1+2=3=AB2,
∴△ABC是直角三角形,且∠C=90°.
∵ ,
∴∠A≠30°.
(2)證明:將△ABC繞BC所在直線旋轉一周,所得的幾何體為圓錐,
∴圓錐的底面圓的半徑= ,
∴圓錐的底面圓的周長=2π =2
π;母線長為
,
∴幾何體的表面積 π+π×(
)2=
π+2π.
【解析】(1)根據勾股定理的逆定理得到△ABC是直角三角形,且∠C=90°,利用三角函數計算出sinA,然后與sin30°進行比較即可判斷∠A≠30°;(2)將△ABC繞BC所在直線旋轉一周,所得的幾何體為圓錐,圓錐的底面圓的半徑為AC,母線長為AB,所得幾何體的表面積分為底面積和側面積,分別根據圓的面積公式和扇形的面積公式進行計算即可.
【考點精析】掌握勾股定理的概念和圓錐的相關計算是解答本題的根本,需要知道直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;圓錐側面展開圖是一個扇形,這個扇形的半徑稱為圓錐的母線;圓錐側面積S=πrl;V圓錐=1/3πR2h..
科目:初中數學 來源: 題型:
【題目】如圖,AB為半圓O的直徑,CD切⊙O于點E,AD、BC分別切⊙O于A、B兩點,AD與CD相交于D,BC與CD相交于C,連接OD、OC,對于下列結論:①OD2=DECD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CDOA;⑤∠DOC=90°;⑥若切點E在半圓上運動(A、B兩點除外),則線段AD與BC的積為定值.其中正確的個數是( )
A.5
B.4
C.3
D.2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,某人在山坡坡腳A處測得電視塔尖點C的仰角為60°,沿山坡向上走到P處再測得C的仰角為45°,已知OA=200米,山坡坡度為 (即tan∠PAB=
),且O,A,B在同一條直線上,求電視塔OC的高度以及此人所在的位置點P的垂直高度.(側傾器的高度忽略不計,結果保留根號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知A、B是反比例函數y= (k>0,x>0)圖象上的兩點,BC∥x軸,交y軸于點C,動點P縱坐標原點O出發,沿O→A→B→C勻速運動,終點為C,過點P作PM⊥x軸,PN⊥y軸,垂足分別為M、N.設四邊形OMPN的面積為S,點P運動的時間為t,則S關于t的函數圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖形既關于點O中心對稱,又關于直線AC,BD對稱,AC=10,BD=6,已知點E,M是線段AB上的動點(不與端點重合),點O到EF,MN的距離分別為h1 , h2 , △OEF與△OGH組成的圖形稱為蝶形.
(1)求蝶形面積S的最大值;
(2)當以EH為直徑的圓與以MQ為直徑的圓重合時,求h1與h2滿足的關系式,并求h1的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB∥CD,AE平分∠CAB.AE與CD相交于點E,∠ACD=40°,則∠BAE的度數是( 。
A.40°
B.70°
C.80°
D.140°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在△ABC中,點D在邊BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圓.
(1)求證:AC是⊙O的切線;
(2)當BD是⊙O的直徑時(如圖2),求∠CAD的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】國務院辦公廳2015年3月16日發布了《中國足球改革的總體方案》,這是中國足球歷史上的重大改革.為了進一步普及足球知識,傳播足球文化,我市舉行了“足球進校園”知識競賽活動,為了解足球知識的普及情況,隨機抽取了部分獲獎情況進行整理,得到下列不完整的統計圖表:
獲獎等次 | 頻數 | 頻率 |
一等獎 | 10 | 0.05 |
二等獎 | 20 | 0.10 |
三等獎 | 30 | b |
優勝獎 | a | 0.30 |
鼓勵獎 | 80 | 0.40 |
請根據所給信息,解答下列問題:
(1)a= , b= , 且補全頻數分布直方圖;
(2)若用扇形統計圖來描述獲獎分布情況,問獲得優勝獎對應的扇形圓心角的度數是多少?
(3)在這次競賽中,甲、乙、丙、丁四位同學都獲得一等獎,若從這四位同學中隨機選取兩位同學代表我市參加上一級競賽,請用樹狀圖或列表的方法,計算恰好選中甲、乙二人的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com