【題目】在數學興趣小組活動中,小明進行數學探究活動,將邊長為的正方形ABCD與邊長為2的正方形AEFG按圖1位置放置,AD與AE在同一直線l上,AB與AG在同一直線上.
(1)圖1中,小明發現DG=BE,請你幫他說明理由.
(2)小明將正方形ABCD按如圖2那樣繞點A旋轉一周,旋轉到當點C恰好落在直線l上時,請你直接寫出此時BE的長.
【答案】(1)見解析;(2)BE的長為或
.
【解析】分析:(1)根據正方形的性質得出AD=AB,AG=AE,再利用SAS證明△DAG≌△BAE, 根據全等三角形對應邊相等即可得出DG=BE;
(2)分兩種情況:①C在EA的延長線上時,連結BD交AC于O,求出OB、OE,然后在Rt△BOE中,利用勾股定理可求出BE的長;②C在AE上時,證明C與E重合,那么
詳解:(1)如圖1,∵四邊形ABCD與四邊形AEFG都是正方形,
∴AD=AB,AG=AE,
在△DAG與△BAE中,
∴△DAG≌△BAE,
∴DG=BE;
(2)將正方形ABCD按如圖2那樣繞點A旋轉一周,旋轉到當點C恰好落在直線l上時,分兩種情況:
①如果C在EA的延長線上時,
如備用圖1,連結BD交AC于O,
∵正方形ABCD邊長為,
∴
∴OB=OA=12BD=1.
∵正方形AEFG邊長為2,
∴OE=OA+AE=1+2=3.
在Rt△BOE中,∵
∴
②如果C在AE上時,
如備用圖2,連結BD交AC于O,
∵正方形ABCD邊長為,
∴
∵正方形AEFG邊長為2,
∴AE=2,
∴C與E重合,
∴
故所求BE的長為或
.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形ABCD的對稱中心為坐標原點O,AD⊥y軸于點E(點A在點D的左側),經過E、D兩點的函數y=﹣x2+mx+1(x≥0)的圖象記為G1,函數y=﹣
x2﹣mx﹣1(x<0)的圖象記為G2,其中m是常數,圖象G1、G2合起來得到的圖象記為G.設矩形ABCD的周長為L.
(1)當點A的橫坐標為﹣1時,求m的值;
(2)求L與m之間的函數關系式;
(3)當G2與矩形ABCD恰好有兩個公共點時,求L的值;
(4)設G在﹣4≤x≤2上最高點的縱坐標為y0,當≤y0≤9時,直接寫出L的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,動點A從原點出發向數軸負方向運動,同時動點B也從原點出發向數軸正方向運動,2秒后,兩點相距16個單位長度,已知動點A、B的速度比為1:3(速度單位:1個單位長度秒).
(1)求兩個動點運動的速度;
(2)在數軸上標出A、B兩點從原點出發運動2秒時的位置;
(3)若表示數0的點記為O,A、B兩點分別從(2)中標出的位置同時向數軸負方向運動,再經過多長時間,滿足OB=2OA?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某測量隊在山腳A處測得山上樹頂仰角為45°(如圖),測量隊在山坡上前進600米到D處,再測得樹頂的仰角為60°,已知這段山坡的坡角為30°,如果樹高為15米,則山高為( 。ň_到1米, =1.732).
A. 585米 B. 1014米 C. 805米 D. 820米
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在△ABC中,AC=BC,∠ACB=90°,過點C作CD⊥AB于點D,點E是AB邊上一動點(不含端點A,B),連接CE,過點B作CE的垂線交直線CE于點F,交直線CD于點G.
(1)求證:AE=CG;
(2)若點E運動到線段BD上時(如圖②),試猜想AE,CG的數量關系是否發生變化,請寫出你的結論;
(3)過點A作AH⊥CE,垂足為點H,并交CD的延長線于點M(如圖③),找出圖中與BE相等的線段,并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結論
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有兩個不相等的實數根.
其中正確結論的個數是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com