【題目】已知:∠MON=36°,OE平分∠MON,點A,B分別是射線OM,OE,上的動點(A,B不與點O重合),點D是線段OB上的動點,連接AD并延長交射線ON于點C,設∠OAC=x,
(1)如圖1,若AB∥ON,則
①∠ABO的度數是;
②當∠BAD=∠ABD時,x=;
當∠BAD=∠BDA時,x=;
(2)如圖2,若AB⊥OM,則是否存在這樣的x的值,使得△ABD中有兩個相等的角?若存在,求出x的值;若不存在,請說明理由.
【答案】
(1)18°,126°,63°
(2)解:如圖2,存在這樣的x的值,使得△ADB中有兩個相等的角.
∵AB⊥OM,∠MON=36°,OE平分∠MON,
∴∠AOB=18°,∠ABO=72°,
①當AC在AB左側時:
若∠BAD=∠ABD=72°,則∠OAC=90°﹣72°=18°;
若∠BAD=∠BDA=(180°﹣72°)÷2=54°,則∠OAC=90°﹣54°=36°;
若∠ADB=∠ABD=72°,則∠BAD=36°,故∠OAC=90°﹣36°=54°;
②當AC在AB右側時:
∵∠ABE=108°,且三角形的內角和為180°,
∴只有∠BAD=∠BDA=(180°﹣108°)÷2=36°,則∠OAC=90°+36°=126°.
綜上所述,當x=18、36、54、126時,△ADB中有兩個相等的角.
【解析】解:(1)如圖1,①∵∠MON=36°,OE平分∠MON,
∴∠AOB=∠BON=18°,
∵AB∥ON,
∴∠ABO=18°;②當∠BAD=∠ABD時,∠BAD=18°,
∵∠AOB+∠ABO+∠OAB=180°,
∴∠OAC=180°﹣18°×3=126°;③當∠BAD=∠BDA時,∵∠ABO=18°,
∴∠BAD=81°,∠AOB=18°,
∵∠AOB+∠ABO+∠OAB=180°,
∴∠OAC=180°﹣18°﹣18°﹣81°=63°,
(2)如圖2,存在這樣的x的值,使得△ADB中有兩個相等的角.
∵AB⊥OM,∠MON=36°,OE平分∠MON,
∴∠AOB=18°,∠ABO=72°,
①當AC在AB左側時:
若∠BAD=∠ABD=72°,則∠OAC=90°﹣72°=18°;
若∠BAD=∠BDA=(180°﹣72°)÷2=54°,則∠OAC=90°﹣54°=36°;
若∠ADB=∠ABD=72°,則∠BAD=36°,故∠OAC=90°﹣36°=54°;
②當AC在AB右側時:
∵∠ABE=108°,且三角形的內角和為180°,
∴只有∠BAD=∠BDA=(180°﹣108°)÷2=36°,則∠OAC=90°+36°=126°.
綜上所述,當x=18、36、54、126時,△ADB中有兩個相等的角.
所以答案是:(1)①18°;②126°;③63°;(2)當x=18、36、54、126時,△ADB中有兩個相等的角.
【考點精析】關于本題考查的平行線的性質,需要了解兩直線平行,同位角相等;兩直線平行,內錯角相等;兩直線平行,同旁內角互補才能得出正確答案.
科目:初中數學 來源: 題型:
【題目】已知:C是線段AB所在平面內任意一點,分別以AC、BC為邊,在AB同側作等邊三角形ACE和BCD,聯結AD、BE交于點P.
(1)如圖1,當點C在線段AB上移動時,線段AD與BE的數量關系是: .
(2)如圖2,當點C在直線AB外,且∠ACB<120°,上面的結論是否還成立?若成立請證明,不成立說明理由.
(3)在(2)的條件下,∠APE大小是否隨著∠ACB的大小發生變化而發生變化,若變化寫出變化規律,若不變,請求出∠APE的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知正方形ABCD邊長為3,點E在AB邊上且BE=1,點P,Q分別是邊BC,CD的動點(均不與頂點重合),當四邊形AEPQ的周長取最小值時,四邊形AEPQ的面積是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于平面直角坐標系xOy中的點P(a,b),若點P′的坐標為(a+kb,ka+b)(其中k為常數,且k≠0),則稱點P′為點P的“k屬派生點”.
例如:P(1,4)的“2屬派生點”為P′(1+2×4,2×1+4),即P′(9,6).
(1)點P(﹣1,6)的“2屬派生點”P′的坐標為;
(2)若點P的“3屬派生點”P′的坐標為(6,2),則點P的坐標;
(3)若點P在x軸的正半軸上,點P的“k屬派生點”為P′點,且線段PP′的長度為線段OP長度的2倍,求k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在數軸上A點表示數a,B點表示數b,C點表示數c,且a、c滿足|a+3|+(c﹣9)2=0.
(1)a= , c=;
(2)如圖所示,在(1)的條件下,若點A與點B之間的距離表示為AB=|a﹣b|,點B與點C之間的距離表示為BC=|b﹣c|,點B在點A、C之間,且滿足BC=2AB,則b=;
(3)在(1)(2)的條件下,若點P為數軸上一動點,其對應的數為x,當代數式|x﹣a|+|x﹣b|+|x﹣c|取得最小值時,此時x= , 最小值為;
(4)在(1)(2)的條件下,若在點B處放一擋板,一小球甲從點A處以1個單位/秒的速度向左運動;同時另一小球乙從點C處以2個單位/秒的速度也向左運動,在碰到擋板后(忽略球的大小,可看作一點)以原來的速度向相反的方向運動,設運動的時間為t(秒),請表示出甲、乙兩小球之間的距離d(用t的代數式表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,△ABC與△DEC關于點C成中心對稱,連接AE、BD.
(1)線段AE、BD具有怎樣的位置關系和大小關系?說明你的理由.
(2)如果△ABC的面積為5cm2 , 求四邊形ABDE的面積.
(3)當∠ACB為多少度時,四邊形ABDE為矩形?說明你的理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com