【題目】新定義:[a,b,c]為二次函數y=ax2+bx+e(a≠0,a,b,c為實數)的“圖象數”,如:y=-x2+2x+3的“圖象數”為[-1,2,3]
(1)二次函數y=x2-x-1的“圖象數”為 .
(2)若圖象數”是[m,m+1,m+1]的二次函數的圖象與x軸只有一個交點,求m的值.
科目:初中數學 來源: 題型:
【題目】如圖,以直線AB上一點O為端點作射線OC,使∠AOC=65°,將一個直角三角形的直角頂點放在點O處.(注:∠DOE=90°)
(1)如圖①,若直角三角板DOE的一邊OD放在射線OA上,則∠COE= ;
(2)如圖②,將直角三角板DOE繞點O順時針方向轉動到某個位置,若OC恰好平分∠AOE,求∠COD的度數;
(3)如圖③,將直角三角板DOE繞點O任意轉動,如果OD始終在∠AOC的內部,試猜想∠AOD和∠COE有怎樣的數量關系?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,,在射線AN上取一點B,使
,過點
作
于點C,點D是線段AB上的一個動點,E是BC邊上一點,且
,設AD=x cm,BE=y cm,探究函數y隨自變量x的變化而變化的規律.
(1)取指定點作圖.根據下面表格預填結果,先通過作圖確定AD=2cm時,點E的位置,測量BE的長度。
①根據題意,在答題卡上補全圖形;
②把表格補充完整:通過取點、畫圖、測量,得到了與
的幾組對應值,如下表:
2 | 3 | ||||||
2.9 | 3.4 | 3.3 | 2.6 | 1.6 | 0 |
(說明:補全表格時相關數值保留一位小數)
③建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數的圖象;
(2)結合畫出的函數圖象,解決問題:當時,
的取值約為__________
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個水果市場某品種蘋果的銷售方式如下表:
購買蘋數量(千克) | 不超過 | 超過 |
每千克的價格(元) |
|
|
(1)如果小明購買千克的蘋果,那么他需要付___________元.
(2)小明分兩次共購買千克的蘋果,第二次購買的數量多于第一次購買的數量,若他兩次共付
元,求他兩次分別購買蘋果的數量.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】《九章算術》記載“今有邑方不知大小,各中開門.出北門三十步有木,出西門七百五十步見木.問邑方有幾何?”意思是:如圖,點M、點N分別是正方形ABCD的邊AD、AB的中點,ME⊥AD,NF⊥AB,EF過點A,且ME=30步,NF=750步,則正方形的邊長為( 。
A. 150步B. 200步C. 250步D. 300步
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著粵港澳大灣區建設的加速推進,廣東省正加速布局以5G等為代表的戰略性新興產業,據統計,目前廣東5G基站的數量約1.5萬座,計劃到2020年底,全省5G基站數是目前的4倍,到2022年底,全省5G基站數量將達到17.34萬座。
(1)計劃到2020年底,全省5G基站的數量是多少萬座?;
(2)按照計劃,求2020年底到2022年底,全省5G基站數量的年平均增長率。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,點為直線
上一點,過點
作射線
,使
將一直角三角板的直角頂點放在點
處,一邊
在射線
上,另一邊
在直線
的下方.
(1)將圖1中的三角板繞點按每秒
的速度沿順時針方向旋轉,使
落在
上.在旋轉的過程中,假如第
秒時,
、
、
三條射線構成的角中有兩個角相等,求此時
的值為多少?
(2)將圖1中的三角板繞點順時針旋轉(如圖2),使
在
的內部,請探究:
與
之間的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在銳角△ABC中,AB=5,tanC=3,BD⊥AC于點D,BD=3,點P從點A出發,以每秒1個單位長度的速度沿AB向終點B運動,過點P作PE∥AC交邊BC于點E,以PE為邊作Rt△PEF,使∠EPF=90°,點F在點P的下方,且EF∥AB.設△PEF與△ABD重疊部分圖形的面積為S(平方單位)(S>0),點P的運動時間為t(秒)
(t>0).
(1)求線段AC的長.
(2)當△PEF與△ABD重疊部分圖形為四邊形時,求S與t之間的函數關系式,并寫出t的取值范圍.
(3)若邊EF所在直線與邊AC交于點Q,連結PQ,如圖2,直接寫出△ABC的某一頂點到P、Q兩點距離相等時t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,以△ABC的各邊,在邊BC的同側分別作三個正方形ABDI,BCFE,ACHG.
(1)求證:△BDE≌△BAC;
(2)求證:四邊形ADEG是平行四邊形.
(3)直接回答下面兩個問題,不必證明:
①當△ABC滿足條件_____________________時,四邊形ADEG是矩形.
②當△ABC滿足條件_____________________時,四邊形ADEG是正方形?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com