【題目】解答題
(1)先化簡,再求值:1﹣ ]÷
+
,其中a=
.
(2)解不等式組: .
【答案】
(1)解:原式=
+
=
+
=
;
當a= 時,原式=
=
=﹣2﹣
(2)解:解不等式2x+4<0得:x<﹣2;
解不等式 (x+8)﹣2>0得:x>﹣4,
∴原不等式組的解集為﹣4<x<﹣2
【解析】(1)首先根據分式的加減法法則和乘除法法則進行化簡,再代入a的值計算即可;(2)分別求出兩個一元一次不等式的解集,即可得出答案.
【考點精析】本題主要考查了一元一次不等式組的解法的相關知識點,需要掌握解法:①分別求出這個不等式組中各個不等式的解集;②利用數軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 )才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】已知:∠AOB是一個直角,作射線OC,再分別作∠AOC和∠BOC的平分線OD、OE.
(1)如圖①,當∠BOC=70°時,求∠DOE的度數;
(2)如圖②,若射線OC在∠AOB內部繞O點旋轉,當∠BOC=α時,求∠DOE的度數.
(3)如圖③,當射線OC在∠AOB外繞O點旋轉時,畫出圖形,直接寫出∠DOE的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠ABC=60°,AB=2,點P是這個菱形內部或邊上的一點,若以點P、B、C為頂點的三角形是等腰三角形,則P、D(P、D兩點不重合)兩點間的最短距離為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1),已知正方形ABCD的對角線AC、BD相交于點O,E是AC上一點,連接EB,過點A作AM⊥BE,垂足為M,AM交BD于點F.
(1)求證:OE=OF;
(2)如圖(2),若點E在AC的延長線上,AM⊥BE于點M,交DB的延長線于點F,其他條件不變,則結論“OE=OF”還成立嗎?如果成立,請給出證明;如果不成立,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某次學生夏令營活動,有小學生、初中生、高中生和大學生參加,共200人,各類學生人數比例見扇形統計圖.
(1)參加這次夏令營活動的初中生共有多少人?
(2)活動組織者號召參加這次夏令營活動的所有學生為貧困學生捐款結果小學生每人捐款5元,初中生每人捐款10元,高中生每人捐款15元,大學生每人捐款20元問平均每人捐款是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點C在線段AB上,AC=8 cm,CB=6 cm,點M,N分別是AC,BC的中點.
(1)求線段MN的長.
(2)若C為線段AB上任一點,滿足AC+CB=a cm,其他條件不變,你能猜想MN的長度嗎?(用含a的代數式表示)并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】從甲地到乙地,先是一段平路,然后是一段上坡路。小明騎車從甲地出發,到達乙地后立即原路返回甲地,途中休息了一段時間。假設小明騎車在平路、上坡、下坡時分別保持勻速前進.已知小明騎車上坡的速度比平路上的速度每小時少5km,下坡的速度比在平路上的速度每小時多5km。設小明出發xh后,到達離甲地y km的地方,圖中的折線OABCDE表示y與x之間的函數關系.
(1)小明騎車在平路上的速度為 km/h;他途中休息了 h;
(2)求線段AB,BC所表示的y與之間的函數關系式;
(3)如果小明兩次經過途中某一地點的時間間隔為0.15h,那么該地點離甲地多遠?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】探索性問題:
已知:b是最小的正整數,且a、b滿足(c﹣5)2+|a+b|=0,請回答問題:
(1)請直接寫出a、b、c的值.a= ,b= ,c= ;
(2)數軸上a、b、c三個數所對應的點分別為A、B、C,點A、B、C同時開始在數軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒1個單位長度和3個單位長度的速度向右運動,假設t秒鐘過后,若點B與點C之間的距離表示為BC,點A與點B之間的距離表示為AB,點A與點C之間的距離表示為AC.
①t秒鐘過后,AC的長度為 (用t的關系式表示);
②請問:BC﹣AB的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com