精英家教網 > 初中數學 > 題目詳情
已知,如圖,拋物線y=-x2+bx+c與x軸,y軸分別相交于點A(-1,0),B(0,3)兩點,其頂點為D
(1)求該拋物線的解析式;
(2)若拋物線與x軸另一個交點為E,求四邊形ABDE的面積.
(1)將點A(-1,0),B(0,3)兩點代入解析式可得:
-1-b+c=0
c=3
,
解得:
b=2
c=3

故該拋物線的解析式為:y=-x2+2x+3.

(2)由函數解析式為y=-x2+2x+3,可得點D坐標為:(1,4),點E坐標為(3,0),
過點D作DF⊥x軸,交x軸于點F,

則點F坐標為(1,0),
從而可得S△ABO=
1
2
AO×BO=
3
2
,
S梯形BOFD=
1
2
(BO+DF)×OF=
7
2
,S△DFE=
1
2
EF×DF=4,
故可得S四邊形ABDE=S△ABO+S梯形BOFD+S△DFE=9.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+b經過點A(4,4)和點B(0,-4).C是x軸上的一個動點.
(1)求拋物線的解析式;
(2)若點C在以AB為直徑的圓上,求點C的坐標;
(3)將點A繞C點逆時針旋轉90°得到點D,當點D在拋物線上時,求出所有滿足條件的點C的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖:
(1)求該拋物線的解析式;
(2)根據圖象回答:當x為何范圍時,該函數值大于0.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖1,拋物線y=a(x-2)2-2的頂點為C,拋物線與x軸交于A,B兩點(其中A點在B點的左邊),CH⊥AB于H,且tan∠ACH=
1
2

(1)求拋物線的解析式;
(2)在坐標平面內是否存在一點D,使得以O、B、C、D為頂點的四邊形是等腰梯形?若存在,求所有的符合條件的D點的坐標;若不存在,請說明理由;
(3)如圖2,將(1)中的拋物線平移,使其頂點在y軸的正半軸上,在y軸上是否存在一點M,使得平移后的拋物線上的任意一點P到x軸的距離與P點到M的距離相等?若存在,求出M點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,矩形OABC的兩邊在坐標軸上,且A(0,-2),AB=4,連接AC,拋物線y=x2+bx+c經過A,B兩點.點P由點A出發以每秒1個單位的速度沿AB邊向點B移動,1秒后點Q也由點A出發以每秒7個單位的速度沿AO,OC,CB邊向點B移動,當其中一個點到達終點時另一個點也停止移動.
(1)求拋物線的解析式;
(2)當P運動到OC上時,設點P的移動時間為t秒,當PQ⊥AC時,求t的值;
(3)當PQAC時,對于拋物線對稱軸上一點H,∠HOQ>∠POQ,求點H的縱坐標的取值范圍.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖所示,一座拋物線型拱橋,橋下水面寬度是4m,拱高是2m,當水面下降1m后,水面寬度是多少?(
6
=2.45,結果保留0.1m)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線y=
1
2
x2+mx+n交x軸于A、B兩點,直線y=kx+b經過點A,與這條拋物線的對稱軸交于點M(1,2),且點M與拋物線的頂點N關于x軸對稱.
(1)求這條拋物線的函數關系式;
(2)根據圖象,寫出函數值y為負數時,自變量x的取值范圍;
(3)設題中的拋物線與直線的另一交點為C,已知P(x,y)為直線AC上一點,過點P作PQ⊥x軸,交拋物線于點Q.當-1≤x≤1.5時,求線段PQ的最大值.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

某校課外活動小組準備利用學校的一面墻,用長為30米的籬笆圍成一個矩形生物苗圃園.
(1)若墻長為18米(如圖所示),當垂直于墻的一邊的長為多少米時,這個苗圃園的面積等于88平方米?
(2)當垂直于墻的一邊的長為多少米時,這個苗圃園的面積最大,并求出這個最大值.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

某海參養殖公司經市場調研發現,每周該公司銷售的海參量y(千克)與單價x(元/千克)之間存在如圖所示的一次函數關系.
(1)根據圖象求y與x之間的函數表達式;
(2)從經濟效益來看,你認為該公司如何制定海參單價,能使每周海參的銷售收入最高?每周海參的最高銷售收入是多少?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视