【題目】如圖,△A1B1C1是邊長為1的等邊三角形,A2為等邊△A1B1C1的中心,連接A2B1并延長到點B2 , 使A2B1=B1B2 , 以A2B2為邊作等邊△A2B2C2 , A3為等邊△A2B2C2的中心,連接A3B2并延長到點B3 , 使A3B2=B2B3 , 以A3B3為邊作等邊△A3B3C3 , 依次作下去得到等邊△AnBnCn , 則等邊△A6B6C6的邊長為 .
【答案】
【解析】解:作A2D1⊥A1B1于D1,A3D2⊥A2B2于D2,如圖,
∵△A1B1C1是邊長為1的等邊三角形,A2為等邊△A1B1C1的中心,
∴∠A2B1D1=30°,B1D1= A1B1=
,
∴cos∠A2B1D1=cos30°= =
,
∴A2B1= ,
∵A2B1=B1B2,
∴A2B2= ,
同理可得∠A3B2D2=30°,B2D2= A2B2=
×
=
,
∴cos∠A3B2D2=cos30°= =
,
∴A3B2= ,
∵A3B2=B2B3,
∴A3B3= =(
)2,
同理可得A4B4=( )3,
A5B5=( )4.A6B6C=(
)5=
,
故答案為 .
作A2D1⊥A1B1于D1,A3D2⊥A2B2于D2,根據等邊三角形的中心的性質得∠A2B1D1=30°,B1D1= A1B1=
,利用余弦的定義得cos∠A2B1D1=cos30°=
=
,可計算出A2B1=
,由A2B1=B1B2得到A2B2=
,用同樣的方法可計算出A3B3=(
)2,特殊的結論.
科目:初中數學 來源: 題型:
【題目】我國古代數學著作《九章算術》中有這樣一道題,原文是:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,問幾何步及之?”意思是:同樣時間段內,走路快的人能走100步,走路慢的人只能走60步(兩人的步長相同).走路慢的人先走100步,走路快的人要走多少步才能追上走路慢的人(兩人走的路線相同)?試求解這個問題.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=12厘米,BC=8厘米,點D為AB的中點,如果點M在線段BC上以2厘米/秒的速度由B點向C點運動,同時,點N在線段CA上由C點向A點運動,若使△BDM與△CMN全等,則點N的運動速度應為_____厘米/秒.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,已知A( ,y1),B(2,y2)為反比例函數y=
圖象上的兩點,動點P(x,0)在x軸正半軸上運動,當線段AP與線段BP之差達到最大時,點P的坐標是( )
A.( ,0)
B.(1,0)
C.( ,0)
D.( ,0)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明的布袋里裝有4個球,其中2個紅球,2個白球,它們除顏色外其余都相同.
(1)摸出1個球是白球的概率是;
(2)同時摸兩個球恰好是兩個紅球的概率(要求畫樹狀圖或列表).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(10分)某工廠計劃在規定時間內生產24000個零件,若每天比原計劃多生產30個零件,則在規定時間內可以多生產300個零件.
(1)求原計劃每天生產的零件個數和規定的天數.
(2)為了提前完成生產任務,工廠在安排原有工人按原計劃正常生產的同時,引進5組機器人生產流水線共同參與零件生產,已知每組機器人生產流水線每天生產零件的個數比20個工人原計劃每天生產的零件總數還多20%,按此測算,恰好提前兩天完成24000個零件的生產任務,求原計劃安排的工人人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,兩直線AB,CD相交于點O,OE平分∠BOD,∠AOC∶∠AOD=7∶11.
(1)求∠COE的度數;
(2)若OF⊥OE,求∠COF的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知∠AOB=45°,點P在∠AOB的內部.P′與P關于OA對稱,P"與P關于OB對稱,則O、P′、P"三點所構成的三角形是( )
A.直角三角形B.鈍角三角形C.等腰直角三角形D.等邊三角形
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com