【題目】閱讀材料:關于三角函數還有如下的公式:
sin(α±β)=sinαcosβ±cosαsinβ
tan(α±β)=
利用這些公式可以將一些不是特殊角的三角函數轉化為特殊角的三角函數來求值.
例:tan75°=tan(45°+30°)==
=
根據以上閱讀材料,請選擇適當的公式解答下面問題:
(1)計算:sin15°;
(2)某校在開展愛國主義教育活動中,來到烈士紀念碑前緬懷和紀念為國捐軀的紅軍戰士.李三同學想用所學知識來測量如圖紀念碑的高度.已知李三站在離紀念碑底7米的C處,在D點測得紀念碑碑頂的仰角為75°,DC為米,請你幫助李三求出紀念碑的高度.
【答案】(1);(2)
.
【解析】
試題分析:(1)把15°化為45°﹣30°以后,再利用公式sin(α±β)=sinαcosβ±cosasinβ計算,即可求出sin15°的值;
(2)先根據銳角三角函數的定義求出BE的長,再根據AB=AE+BE即可得出結論.
試題解析:(1)sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°==
;
(2)在Rt△BDE中,∵∠BED=90°,∠BDE=75°,DE=AC=7米,∴BE=DEtan∠BDE=DEtan75°.
∵tan75°=,∴BE=7(
)=
,∴AB=AE+BE=
=
(米).
答:紀念碑的高度為()米.
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,點P的坐標為(,
),點Q的坐標為(
,
),且
,
,若P,Q為某個矩形的兩個頂點,且該矩形的邊均與某條坐標軸垂直,則稱該矩形為點P,Q的“相關矩形”.下圖為點P,Q 的“相關矩形”的示意圖.
(1)已知點A的坐標為(1,0).
①若點B的坐標為(3,1)求點A,B的“相關矩形”的面積;
②點C在直線x=3上,若點A,C的“相關矩形”為正方形,求直線AC的表達式;
(2)⊙O的半徑為,點M的坐標為(m,3).若在⊙O上存在一點N,使得點M,N的“相關矩形”為正方形,求m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“重慶到處都人從眾”……今年的五一小長假,相信重慶市民的朋友圈已被“重慶太火”刷屏了.據重慶市旅游發展委員會公布的數據顯示,五一節四天,重慶共接待境內外游客2559萬人次,2259萬用科學記數法表示為_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知如圖1:△ABC中,AB=AC,∠B、∠C的平分線相交于點O,過點O作EF∥BC交AB、AC于E、F.
(1)圖中有幾個等腰三角形?請說明EF與BE、CF間有怎樣的關系.
(2)若AB≠AC,其他條件不變,如圖2,圖中還有等腰三角形嗎?如果有,請分別指出它們.另第(1)問中EF與BE、CF間的關系還存在嗎?
(3)若△ABC中,∠B的平分線與三角形外角∠ACD的平分線CO交于O,過O點作OE∥BC交AB于E,交AC于F.如圖3,這時圖中還有哪幾個等腰三角形?EF與BE、CF間的關系如何?為什么?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com