精英家教網 > 初中數學 > 題目詳情

【題目】氣象臺預報本市明天降水概率是85%,對此信息,下列說法正確的是(

A.本市明天將有85%的地區降水 B.本市明天將有85%的時間降水

C.明天降水的可能性比較大 D.明天肯定下雨

【答案】C.

【解析】

試題解析:根據概率表示某事情發生的可能性的大小,分析可得:

A、明天降水的可能性為85%,并不是有85%的地區降水,錯誤;

B、本市明天將有85%的時間降水,錯誤;

C、明天降水的可能性為90%,說明明天降水的可能性比較大,正確;

D、明天肯定下雨,錯誤.

故選C.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】規定:[x]表示不大于x的最大整數,(x)表示不小于x的最小整數,[x)表示最接近x的整數(x≠n+0.5,n為整數),例如:[2.3]=2,(2.3)=3,[2.3)=2.則下列說法正確的是 .(寫出所有正確說法的序號)

當x=1.7時,[x]+(x)+[x)=6;

當x=﹣2.1時,[x]+(x)+[x)=﹣7;

方程4[x]+3(x)+[x)=11的解為1<x<1.5;

當﹣1<x<1時,函數y=[x]+(x)+x的圖象與正比例函數y=4x的圖象有兩個交點.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(2016·西寧中考)如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.

(1)求證:CD是⊙O的切線;

(2)過點B作⊙O的切線交CD的延長線于點E,BC6, ,求BE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知在△ABC中,三邊長a、b、c滿足a2+8b2+c2-4b(a+c)=0,試判斷△ABC的形狀并加以說明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線x軸交于A,B兩點(AB的左側),與y軸交于點C0,-3),點D與點C關于拋物線的對稱軸對稱.

1)求拋物線的解析式及點D的坐標;

2)點P是拋物線對稱軸上的一動點,當PAC的周長最小時,求出點P的坐標;

3)若點Qx軸正半軸上,且∠ADQDAC,求出點Q的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】定義:如圖①,拋物線y=ax2+bx+c(a≠0)與x軸交于A,B兩點,點P在該拋物線上(P點與A、B兩點不重合).如果△ABP的三邊滿足AP2+BP2=AB2,則稱點P為拋物線y=ax2+bx+c(a≠0)的勾股點.

(1)直接寫出拋物線y=-x2+1的勾股點的坐標.

(2)如圖②,已知拋物線y=ax2+bx(a≠0)與x軸交于A,B兩點,點P(1, )是拋物線的勾股點,求拋物線的函數表達式.

(3)在(2)的條件下,點Q在拋物線上,求滿足條件S△ABQ=S△ABP的Q點(異于點P)的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是小強洗漱時的側面示意圖,洗漱臺(矩形ABCD)靠墻擺放,高AD=80cm,寬AB=48cm,小強身高166cm,下半身FG=100cm,洗漱時下半身與地面成80°(∠FGK=80°),身體前傾成125°(∠EFG=125°),腳與洗漱臺距離GC=15cm(點D,C,G,K在同一直線上).

(1)此時小強頭部E點與地面DK相距多少?

(2)小強希望他的頭部E恰好在洗漱盆AB的中點O的正上方,他應向前或后退多少?

(sin80°≈0.98,cos80°≈0.17, ≈1.41,結果精確到0.1cm)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某報紙上刊登了一則新聞,“某種品牌的節能燈的合格率為95%”,請據此回答下列問題:

(1)這則新聞是否說明市面上所有這種品牌的節能燈恰有5%為不合格?

(2)你認為這則消息來源于普查,還是抽樣調查?為什么?

(3)如果已知在這次檢查中合格產品有76個,則共有多少個節能燈接受檢查?

(4)如果此次檢查了兩種產品,數據如下表所示,有人由此認為“A品牌的不合格率比B品牌低,更讓人放心”.你同意這種說法嗎?為什么?

品牌

A品牌

B品牌

被檢測數

70

10

不合格數

3

1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算:(2x-12-2x-3)(2x+3

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视