【題目】如圖,BD是平行四邊形ABCD的對角線,DE⊥AB于點E,過點E的直線交BC于點G,且BG=CG.
(1)求證:GD=EG.
(2)若BD⊥EG垂足為O,BO=2,DO=4,畫出圖形并求出四邊形ABCD的面積.
(3)在(2)的條件下,以O為旋轉中心順時針旋轉△GDO,得到△G′D'O,點G′落在BC上時,請直接寫出G′E的長.
【答案】(1)詳見解析;(2)圖詳見解析,12;(3)
.
【解析】
(1)如圖1,延長EG交DC的延長線于點H,由“AAS”可證△CGH≌△BGE,可得GE=GH,由直角三角形的性質可得DG=EG=GH;
(2)通過證明△DEO∽△DBO,可得,可求DE=
,由平行線分線段成比例可求EG=
,GO=EG-EO=
,由勾股定理可求BG=CG=
,可得DE=AD,即點A與點E重合,可畫出圖形,由面積公式可求解;
(3)如圖3,過點O作OF⊥BC,由旋轉的性質和等腰三角形的性質可得GF=G'F,由平行線分線段成比例可求GF的長,由勾股定理可求解.
證明:(1)如圖1,延長EG交DC的延長線于點H,
∵四邊形ABCD是平行四邊形,
∴AD=BC,AD∥BC,AB=CD,AB∥CD,
∵AB∥CD,
∴∠H=GEB,又∵BG=CG,∠BGE=∠CGH,
∴△CGH≌△BGE(AAS),
∴GE=GH,
∵DE⊥AB,DC∥AB,
∴DC⊥DE,
∴DG=EG=GH;
(2)如圖1:∵DB⊥EG,
∴∠DOE=∠DEB=90°,且∠EDB=∠EDO,
∴△DEO∽△DBO,
∴,
∴DE×DE=4×(2+4)=24,
∴DE=
∴EO=,
∵AB∥CD,
∴,
∴HO=2EO=,
∴EH=,且EG=GH,
∴EG=,GO=EG﹣EO=
,
∴GB=,
∴BC==AD,
∴AD=DE,
∴點E與點A重合,
如圖2:
∵S四邊形ABCD=2S△ABD,
∴S四邊形ABCD=2××BD×AO=6×2
=12
;
(3)如圖3,過點O作OF⊥BC,
∵旋轉△GDO,得到△G′D'O,
∴OG=OG',且OF⊥BC,
∴GF=G'F,
∵OF∥AB,
∴,
∴GF=BG=
,
∴GG'=2GF=,
∴BG'=BG﹣GG'=,
∵AB2=AO2+BO2=12,
∵EG'=AG'=.
科目:初中數學 來源: 題型:
【題目】某校為了解學生對新聞、體育、動畫、娛樂、戲曲五類電視節目的喜愛情況,隨機選取該校部分學生進行調查,要求每名學生從中只選一類最喜愛的電視節目,以下是根據調查結果繪制的不完整統計表,根據表中信息,回答下列問題:
(1)本次共調查了______名學生;
(2)若將各類電視節目喜愛的人數所占比例繪制成扇形統計圖,則“喜愛體育”對應扇形的圓心角度數是_________度;
(3)該校共有1500名學生,根據調查結果估計該校“喜愛體育”節目的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平行四邊形ABCD中,AB=3cm, BC=5cm, ,
沿 AC的方向勻速平移得到
,速度為1 cm/ s;同時,點Q從點C出發,沿CB方向勻速移動,速度為1cm/s,當
停止平移時,點Q也停止移動,如圖2,設移動時間為t(s)(0< <4),連結PQ,MQ ,
解答下列問題:
(1)當t為何值時, ?
(2)當t為何值時, ?
(3)當t為何值時, ?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a,b,c為常數,且a≠0)中的x與y的部分對應值如表:
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列結論錯誤的是( 。
A.ac<0
B.當x>1時,y的值隨x的增大而減小
C.3是方程ax2+(b﹣1)x+c=0的一個根
D.當﹣1<x<3時,ax2+(b﹣1)x+c>0
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】反比例函數在第一象限的圖象如圖所示,過點A(1,0)作x軸的垂線,交反比例函數
的圖象于點M,△AOM的面積為3.
(1)求反比例函數的解析式;
(2)設點B的坐標為(t,0),其中t>1.若以AB為一邊的正方形有一個頂點在反比例函數的圖象上,求t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定安縣定安中學初中部三名學生競選校學生會主席,他們的筆試成績和演講成績(單位:分)分別用兩種方式進行統計,如表和圖.
A | B | C | |
筆試 | 85 | 95 | 90 |
口試 |
| 80 | 85 |
(1)請將表和圖中的空缺部分補充完整;
(2)圖中B同學對應的扇形圓心角為 度;
(3)競選的最后一個程序是由初中部的300名學生進行投票,三名候選人的得票情況如圖(沒有棄權票,每名學生只能推薦一人),則A同學得票數為 ,B同學得票數為 ,C同學得票數為 ;
(4)若每票計1分,學校將筆試、演講、得票三項得分按4:3:3的比例確定個人成績,請計算三名候選人的最終成績,并根據成績判斷 當選.(從A、B、C、選擇一個填空)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有4張看上去無差別的卡片,上面分別寫著1,2,3,4.
(1)一次性隨機抽取2張卡片,求這兩張卡片上的數字之和為奇數的概率;
(2)隨機摸取1張后,放回并混在一起,再隨機抽取1張,求兩次取出的卡片上的數字之和等于4的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A作BC的平行線交CE的延長線與F,且AF=BD,連接BF。
(1)求證:D是BC的中點;
(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結論。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,△OAB的邊OB在x軸上,過點A的反比例函數y=的圖象交AB于點C,且AC:CB=2:1,S△OAC=
,則k的值為( )
A.B.
C.2D.2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com